Chapter 8 Mean Value Theorems-II

Formulas for the expansion

Taylor’s theorem in finite form with Lagrange’s form of remainder

f(a+h)=f(a)+hf(a)+h22!f(a)++hn1(n1)!fn1(a)+hnn!fn(a+θh)f(a+h)=f(a)+hf(a)+h22!f′′(a)++hn1(n1)!fn1(a)+hnn!fn(a+θh)

where 0<θ<10<θ<1

The term hnn!fn(a+θh)hnn!fn(a+θh) is the remainder RnRn.

Taylor’s theorem in finite form with Cauchy’s form of remainder

f(a+h)=f(a)+hf(a)+h22!f(a)++hn1(n1)!fn1(a)+hn(n1)!(1θ)n1fn(a+θh)f(a+h)=f(a)+hf(a)+h22!f′′(a)++hn1(n1)!fn1(a)+hn(n1)!(1θ)n1fn(a+θh)

where 0<θ<10<θ<1

The term hn(n1)!(1θ)n1fn(a+θh)hn(n1)!(1θ)n1fn(a+θh) is the remainder RnRn.

Maclaurin’s series in finite form with Lagrange’s form of remainder

f(x)=f(0)+x1!f(0)+x22!f(0)++xn1(n1)!fn1(0)+xnn!fn(θx)f(x)=f(0)+x1!f(0)+x22!f′′(0)++xn1(n1)!fn1(0)+xnn!fn(θx)

where 0<θ<10<θ<1

The term xnn!fn(θx)xnn!fn(θx) is the remainder RnRn.

Maclaurin’s series in finite form with Cauchy’s form of remainder

f(x)=f(0)+x1!f(0)+x22!f(0)++xn1(n1)!fn1(0)+xn(n1)!(1θ)n1fn(θx)f(x)=f(0)+x1!f(0)+x22!f′′(0)++xn1(n1)!fn1(0)+xn(n1)!(1θ)n1fn(θx)

where 0<θ<10<θ<1

The term xn(n1)!(1θ)n1fn(θx)xn(n1)!(1θ)n1fn(θx) is the remainder RnRn.

Taylor’s series in infinite series

f(x+h)=f(x)+hf(x)+h22!f(x)+h33!f(x)+f(x+h)=f(x)+hf(x)+h22!f′′(x)+h33!f′′′(x)+

Maclaurin’s series in infinite series

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+

Maclaurin Series Expansion is a Taylor Series Expansion centered at 0.

8.0.1 Few expansions to remember

ex=1+x+x22!+x33!+x44!+sinx=xx33!+x55!x77!+cosx=1x22!+x44!x66!+tanx=x+x33+2x515+17315x7+log(1+x)=xx22+x33x44+x55ex=1+x+x22!+x33!+x44!+sinx=xx33!+x55!x77!+cosx=1x22!+x44!x66!+tanx=x+x33+2x515+17315x7+log(1+x)=xx22+x33x44+x55

8.0.2 Question 1

For each of the following functions prove that Rn0Rn0 as nn and write down the power series expansion of each.

  1. cosxcosx

Let f(x)=cosxf(x)=cosx.

We know the Maclaurin’s series with Lagrange’s form of remainder,

f(x)=f(0)+x1!f(0)+x22!f(0)++xn1(n1)!fn1(0)+xnn!fn(θx)f(x)=f(0)+x1!f(0)+x22!f′′(0)++xn1(n1)!fn1(0)+xnn!fn(θx)

Then,

fn(x)=cos(x+nπ/2)fn(θx)=cos(θx+nπ/2)Rn=xnn!fn(θx)=xnn!cos(θx+nπ/2)fn(x)=cos(x+nπ/2)fn(θx)=cos(θx+nπ/2)Rn=xnn!fn(θx)=xnn!cos(θx+nπ/2)

As nn, Rn0Rn0 for all values of xx. Thus conditions for Maclaurin’s expansion for infinite series is valid.

Also,

f(0)=1f(0)=cos(0+π/2)=0f(0)=cos(0+2π/2)=1f(0)=cos(0+3π/2)=0f4(0)=cos(0+4π/2)=1f(0)=1f(0)=cos(0+π/2)=0f′′(0)=cos(0+2π/2)=1f′′′(0)=cos(0+3π/2)=0f4(0)=cos(0+4π/2)=1

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+=1+0x22!+0+x44!+0x66!+cosx=1x22!+x44!x66!+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+=1+0x22!+0+x44!+0x66!+cosx=1x22!+x44!x66!+

  1. sin2xsin2x

Let f(x)=sin2x=1cos2x2f(x)=sin2x=1cos2x2.

fn(x)=012×2ncos(2x+nπ/2)=2n1cos(2x+nπ/2)fn(θx)=2n1cos(2θx+nπ/2)Rn=xnn!fn(θx)=xnn!2n1cos(2θx+nπ/2)fn(x)=012×2ncos(2x+nπ/2)=2n1cos(2x+nπ/2)fn(θx)=2n1cos(2θx+nπ/2)Rn=xnn!fn(θx)=xnn!2n1cos(2θx+nπ/2)

As nn, Rn0Rn0 for all values of xx. Thus conditions for Maclaurin’s expansion for infinite series is valid.

Also,

f(0)=0f(0)=20cos(0+π/2)=0f(0)=221cos(0+2π/2)=2f(0)=22cos(0+3π/2)=0f4(0)=23cos(0+4π/2)=23f5(0)=24cos(0+5π/2)=0f6(0)=25cos(0+6π/2)=25f(0)=0f(0)=20cos(0+π/2)=0f′′(0)=221cos(0+2π/2)=2f′′′(0)=22cos(0+3π/2)=0f4(0)=23cos(0+4π/2)=23f5(0)=24cos(0+5π/2)=0f6(0)=25cos(0+6π/2)=25

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+sin2x=0+0+2x22!+023x44!+0+25x66!=12{(2x)22!+0(2x)44!+0+(2x)66!}=12{(2x)22!(2x)44!+(2x)66!}f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+sin2x=0+0+2x22!+023x44!+0+25x66!=12{(2x)22!+0(2x)44!+0+(2x)66!}=12{(2x)22!(2x)44!+(2x)66!}

sin2x=12{(2x)22!(2x)44!+(2x)66!}sin2x=12{(2x)22!(2x)44!+(2x)66!}(8.1)

  1. cos2xcos2x

We know,

cos2x=1sin2xcos2x=1sin2x

From the expansion of sin2xsin2x in (8.1), we have,

cos2x=112{(2x)22!(2x)44!+(2x)66!}cos2x=112{(2x)22!(2x)44!+(2x)66!}

  1. log(1x)log(1x)

Let y=f(x)=log(1x)y=f(x)=log(1x).

General equation for higher derivatives of the given function is,

fn(x)=(n1)!(1)2n1(1x)nfn(x)=(n1)!(1)2n1(1x)n

So,

f(0)=0f(0)=1f(0)=1f(0)=2!f4(0)=3!f(0)=0f(0)=1f′′(0)=1f′′′(0)=2!f4(0)=3!

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1x)=0x1!x22!2!x33!3!x44!log(1x)=xx22x33x44f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1x)=0x1!x22!2!x33!3!x44!log(1x)=xx22x33x44

  1. 1(1+x)1(1+x)

Let y=f(x)=11+xy=f(x)=11+x.

f(x)=(1)(1+x)2f(x)=(1)22!(1+x)3f(x)=(1)33!(1+x)4f(x)=(1)(1+x)2f′′(x)=(1)22!(1+x)3f′′′(x)=(1)33!(1+x)4

So general form for higher derivatives is,

fn(x)=(1)nn!(1+x)n+1fn(x)=(1)nn!(1+x)n+1

Calculating higher derivatives for x=0x=0,

f(0)=1f(0)=1f(0)=2!f(0)=3!f(0)=1f(0)=1f′′(0)=2!f′′′(0)=3!

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+11+x=1x+2!x22!3!x33!+=1x+x2x3+x4f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+11+x=1x+2!x22!3!x33!+=1x+x2x3+x4

8.0.3 Question 2

Expand in ascending powers of x

  1. (1+x)m(1+x)m

Let y=f(x)=(1+x)my=f(x)=(1+x)m.

Differentiating successively,

f(x)=m(1+x)m1f(x)=m(m1)(1+x)m2f(x)=m(m1)(m2)(1+x)m3fn(x)=m!(m3)!(1+x)mnf(x)=m(1+x)m1f′′(x)=m(m1)(1+x)m2f′′′(x)=m(m1)(m2)(1+x)m3fn(x)=m!(m3)!(1+x)mn

Calculating higher derivatives at x=0x=0,

f(0)=1f(0)=mf(0)=m(m1)f(0)=m(m1)(m2)f(0)=1f(0)=mf′′(0)=m(m1)f′′′(0)=m(m1)(m2)

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+(1+x)m=1+mx+m(m1)x22!+m(m1)(m2)x33!+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+(1+x)m=1+mx+m(m1)x22!+m(m1)(m2)x33!+

  1. tanhxtanhx

Let tanhx=sinhxcoshx=f(x)g(x)tanhx=sinhxcoshx=f(x)g(x). We have to find individual expansion of f(x)=sinhxf(x)=sinhx and g(x)=coshxg(x)=coshx and divide f(x)f(x) by g(x)g(x) to find the required expansion.

We have,

f(x)=sinhxf(0)=0f(x)=coshxf(0)=1f(x)=sinhxf(0)=0f(x)=coshxf(0)=1f4(x)=sinhxf4(0)=0f(x)=sinhxf(0)=0f(x)=coshxf(0)=1f′′(x)=sinhxf′′(0)=0f′′′(x)=coshxf′′′(0)=1f4(x)=sinhxf4(0)=0

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+sinhx=x+x33!+x55!+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+sinhx=x+x33!+x55!+

Similarly,

g(x)=coshxg(0)=1g(x)=sinhxg(0)=0g(x)=coshxg(0)=1g(x)=sinhxg(0)=0g4(x)=coshxg4(0)=1g(x)=coshxg(0)=1g(x)=sinhxg(0)=0g′′(x)=coshxg′′(0)=1g′′′(x)=sinhxg′′′(0)=0g4(x)=coshxg4(0)=1

Using Maclaurin’s expansion for infinite series,

g(x)=g(0)+xg(0)+x22!g(0)+x33!g(0)+x44!g4(0)+x55!g5(0)+x66!g6(0)+coshx=1+x22!+x44!+x66!+g(x)=g(0)+xg(0)+x22!g′′(0)+x33!g′′′(0)+x44!g4(0)+x55!g5(0)+x66!g6(0)+coshx=1+x22!+x44!+x66!+

Now,

tanhx=sinhxcoshx=f(x)g(x)=x+x33!+x55!+1+x22!+x44!+x66!+=x23!x3+165!x5tanhx=sinhxcoshx=f(x)g(x)=x+x33!+x55!+1+x22!+x44!+x66!+=x23!x3+165!x5

How this division is carried out is shown here,

Division of two expansions

Figure 8.1: Division of two expansions

For inspiration of such division, see this video.

8.0.4 Question 3

  1. Expand tanxtanx in the ascending integral powers of xx using Maclaurin’s series and hence get the expansion of sec2xsec2x.

We know tanx=sinxcosxtanx=sinxcosx. We also know the expansions as follow:

sinx=xx33!+x55!cosx=1x22!+x44!x66!+sinx=xx33!+x55!cosx=1x22!+x44!x66!+

Thus,

tanx=xx33!+x55!1x22!+x44!x66!+tanx=xx33!+x55!1x22!+x44!x66!+

By division as shown in figure below, we have

tanx=x+13x3+215x5+17315x7+tanx=x+13x3+215x5+17315x7+

Division of $\sin x$ by $\cos x$

Figure 8.2: Division of sinxsinx by cosxcosx

Differentiating both sides w.r.t xx,

sec2x=1+3x23+2×5x415+17×7x6315+=1+x2+23x4+1745x6+sec2x=1+3x23+2×5x415+17×7x6315+=1+x2+23x4+1745x6+

  1. Obtain the series expansion of esinxesinx by Maclaurin’s theorem as far as the term x4x4.

Let f(x)=esinxf(x)=esinx.

f(x)=esinxcosx=f(x)cosxf(x)=f(x)cosxf(x)sinxf(x)=f(x)cosxf(x)sinx(f(x)cosx+f(x)sinx)=f(x)cosx2f(x)sinxf(x)f4(x)=f(x)cosxf(x)sinx2(f(x)cosx+f(x)sinx)f(x)=f(x)cosx3f(x)sinx2f(x)cosxf(x)f(x)=esinxcosx=f(x)cosxf′′(x)=f(x)cosxf(x)sinxf′′′(x)=f′′(x)cosxf(x)sinx(f(x)cosx+f(x)sinx)=f′′(x)cosx2f(x)sinxf(x)f4(x)=f′′′(x)cosxf′′(x)sinx2(f(x)cosx+f′′(x)sinx)f′′(x)=f′′′(x)cosx3f′′(x)sinx2f(x)cosxf′′(x)

Calculating higher order derivatives at x=0x=0,

f(0)=1f(0)=1×1=1f(0)=10=1f(0)=101=0f4(0)=0021=3f5(0)=f4(0)cos03f(0)cos02f(0)cos0f(0)=3320=8f(0)=1f(0)=1×1=1f′′(0)=10=1f′′′(0)=101=0f4(0)=0021=3f5(0)=f4(0)cos03f′′(0)cos02f′′(0)cos0f′′′(0)=3320=8

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+esinx=1+x+x22!×1+0+x44!×(3)+x55!×(8)=1+x+x22x48x515f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+esinx=1+x+x22!×1+0+x44!×(3)+x55!×(8)=1+x+x22x48x515

I have answered this question in Math StackExchange too.

  1. Find the power series expansion of exsinxexsinx by Maclaurin’s theorem upto x4x4.

Let y=f(x)=exsinxy=f(x)=exsinx.

f(x)=excosx+exsinxf(x)=excosxexsinx+excosx+exsinx=2excosxf(x)=2(excosxexsinx)f4(x)=2(excosxexsinxexcosxexsinx)=4exsinxf5(x)=4(excosx+exsinx)f(x)=excosx+exsinxf′′(x)=excosxexsinx+excosx+exsinx=2excosxf′′′(x)=2(excosxexsinx)f4(x)=2(excosxexsinxexcosxexsinx)=4exsinxf5(x)=4(excosx+exsinx)

Other way of finding successive derivatives is the formula in the chapter on higher derivatives,

f(x)=exsinxfn(x)=(12+12)n/2exsin(x+ntan11)=2n/2exsin(x+nπ/4)fn(0)=2n/2sin(nπ4)f(x)=exsinxfn(x)=(12+12)n/2exsin(x+ntan11)=2n/2exsin(x+nπ/4)fn(0)=2n/2sin(nπ4)

Calculating higher derivatives at x=0x=0,

f(0)=0f(0)=1f(0)=2f(0)=2f4(0)=0f5(0)=4f(0)=0f(0)=1f′′(0)=2f′′′(0)=2f4(0)=0f5(0)=4

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+exsinx=0+x+x22!×2+x33!×2+0+x55!×(4)exsinx=x+x2+x33x530f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+exsinx=0+x+x22!×2+x33!×2+0+x55!×(4)exsinx=x+x2+x33x530

  1. Expand log(1+sinx)log(1+sinx) with the help of Maclaurin’s theorem as far as the term involving x4x4.

Let f(x)=log(1+sinx)f(x)=log(1+sinx).

f(x)=cosx1+sinxf(x)=sinx(1+sinx)cos2x(1+sinx)2=sinxsin2xcos2x(1+sinx)2=11+sinxf(x)=cosx(1+sinx)2f4(x)=sinx(1+sinx)2cosx(2(1+sinx)cosx)(1+sinx)4=(1+sinx)(sinxsin2x2cos2x)(1+sinx)4=1+sinx+cos2x(1+sinx)3f(x)=cosx1+sinxf′′(x)=sinx(1+sinx)cos2x(1+sinx)2=sinxsin2xcos2x(1+sinx)2=11+sinxf′′′(x)=cosx(1+sinx)2f4(x)=sinx(1+sinx)2cosx(2(1+sinx)cosx)(1+sinx)4=(1+sinx)(sinxsin2x2cos2x)(1+sinx)4=1+sinx+cos2x(1+sinx)3

Calculating higher derivatives at x=0x=0,

f(0)=0f(0)=1f(0)=1f(0)=1f4(0)=2f(0)=0f(0)=1f′′(0)=1f′′′(0)=1f4(0)=2

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1+sinx)=0+x+x22!×(1)+x33!×(1)+x44!×(2)+log(1+sinx)=xx22+x36x412+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1+sinx)=0+x+x22!×(1)+x33!×(1)+x44!×(2)+log(1+sinx)=xx22+x36x412+

Instead of going through cumbersome successive derivatives, we can approach the problem in other way too,

ddxlog(1+sinx)=cosx1+sinx=1x22!+x44!x66!+1+xx33!+x55!x77!+ddxlog(1+sinx)=cosx1+sinx=1x22!+x44!x66!+1+xx33!+x55!x77!+

Integrating both sides after the result of division gives the desired result.

  1. Apply Maclaurin’s series to find the expansion of ex1+exex1+ex as far as the term in x3x3 and hence the expansion of log(1+ex)log(1+ex).

The expansion of exex is,

ex=1+x+x22!+x33!+x44!+ex=1+x+x22!+x33!+x44!+

So,

1+ex=1+1+x+x22!+x33!+=2+x+x22!+x33!+1+ex=1+1+x+x22!+x33!+=2+x+x22!+x33!+

Thus,

ex1+ex=1+x+x22!+x33!+2+x+x22!+x33!+=12+x4x348+x496ex1+ex=1+x+x22!+x33!+2+x+x22!+x33!+=12+x4x348+x496

Figure showing divisions of $e^x$ by $1 + e^x$ expansion

Figure 8.3: Figure showing divisions of exex by 1+ex1+ex expansion

For second part, let f(x)=log(1+ex)f(x)=log(1+ex).

f(x)=log(1+ex)f(0)=log2f(x)=ex1+ex=12+x4x348+x496f(0)=12f(x)=143x248+4x396f(0)=14f(x)=6x48+12x296f(0)=0f4(x)=648+24x96f4(0)=648f(x)=log(1+ex)f(0)=log2f(x)=ex1+ex=12+x4x348+x496f(0)=12f′′(x)=143x248+4x396f′′(0)=14f′′′(x)=6x48+12x296f′′′(0)=0f4(x)=648+24x96f4(0)=648

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1+ex)=log2+12x+x22!×14+0+x44!×(648)+=log2+x2+x28x4192+f(x)=f(0)+xf(0)+x22!f′′(0)+x33!f′′′(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+log(1+ex)=log2+12x+x22!×14+0+x44!×(648)+=log2+x2+x28x4192+

8.0.5 Question 4

Assuming the validity of expansion, prove the following series using Maclaurin’s theorem.

  1. secx=1+12x2+524x4+secx=1+12x2+524x4+

We know,

cosx=1x22!+x44!x66!+cosx=1x22!+x44!x66!+

Let,

secx=a0+a1x+a2x2+a3x3+a4x4+secx=a0+a1x+a2x2+a3x3+a4x4+(8.2)

1=(a0+a1x+a2x2+a3x3+a4x4+)cosx1=(a0+a1x+a2x2+a3x3+a4x4+)(1x22!+x44!x66!+)

Equating the constant term and the coefficients of x,x2,x3,x4, we have,

a0=1a1=0a02!+a2=0,a2=12a12!+a3=0,a3=0a04!a22!+a4=0,a4=524

Replacing values of a0,a1,a2,a3,a4 in (8.2), we have,

secx=1+0+12x2+0+524x4+=1+12x2+524x4+

  1. log(1+tanx)=xx22!+43!x3

Approaching this problem via successive derivatives is cumbersome. So we use algebraic method for expansion utilising what we know already.

What we know,

tanx=x+x33+2x515+17315x7+log(1+x)=xx22+x33x44+x55x66+x77

So,

log(1+tanx)=tanx(tanx)22+(tanx)33(tanx)44+(tanx)55(tanx)66+(tanx)77

Lets find values of numerators in the fractions,

(tanx)2=(x+x33+2x515+17315x7+)2=x2+2x(x33+2x515+17315x7+)+(x33+2x515+17315x7+)2=x2+2x43+4x615++x69+=x2+2x43+17x645+(tanx)3=(x+x33+2x515+17315x7+)3=x3+3x2(x33+2x515+)+3x(x33+2x515+)2+(x33+2x515+)3=x3+3x53+6x715++3x79+12x945++x927+=x3+3x53+11x715+(tanx)4=(x+x33+2x515+17315x7+)4=x4+4x3(x33+2x515+)+=x4+4x63+(tanx)5=(x+x33+2x515+17315x7+)5=x5+5x4(x33+2x515+)+=x5+5x73+(tanx)6=(x+x33+2x515+17315x7+)6=x6+(tanx)7=(x+x33+2x515+17315x7+)7=x7+

Lets put these values in equation (8.3),

log(1+tanx)=tanx(tanx)22+(tanx)33(tanx)44+(tanx)55(tanx)66+(tanx)77=(x+x33+2x515+17315x7+)12(x2+2x43+17x645+)+13(x3+3x53+11x715+)14(x4+4x63+)+15(x5+5x73+)16(x6+)+17(x7+)

Now collecting coefficients of x,x2,x3,x4,x5,x6,x7, we have,

x x2 x3 x4 x5
1 12 13+13=23 1314=712 215+13+15=23
x6 x7
17901316=3145 17315+1145+13+17=244315

So the expansion is,

log(1+tanx)=x12x2+23x3712x4+23x53145x6+244315x7

For a much easier approach, derivative of the function log(1+tanx) is given by

ddxln(1+tan(x))=sec2(x)1+tan(x)=1+tan2(x)1+tan(x)=1+(x+13x3+215x5)21+x+13x3+215x5+O(x7)=1+x2+23x4+1745x61+x+13x3+215x5+O(x7)=1x+2x273x3+103x46215x5+24445x6+O(x7)

Integrating both sides,

log(1+tanx)=x12x2+23x3712x4+23x53145x6+244315x7

  1. exsecx=1+x+x2+23x3+

exsecx=(1+x+x22!+x33!+x44!+)(1+12x2+524x4+)=1+x+(12+12!)x2+(12+13!)x3+(524+12!2+14!)x4+=1+x+x2+46x3+1124x4+=1+x+x2+23x3+1124x4+

This video on YouTube is good to learn the concept of multiplication of two expansions.

  1. eaxcosbx=1+ax+(a2b2)x22!+a(a23b2)x33!+

y=eaxcosbxy1=aeaxcosbxbeaxsinbx=aybeaxsinbxy2=ay1b(beaxcosbx+aeaxsinbx)=ay1b2yabeaxsinbxy3=ay2b2y1ab(beaxcosbx+aeaxsinbx)=ay2b2y1ab2ya2beaxsinbx

(y)0=1(y1)0=a(y2)0=a2b2(y3)0=a(a2b2)ab2ab20=a(a23b2)

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+eaxcosbx=1+ax+(a2b2)x22!+a(a23b2)x33!+

  1. log(1+x+x2)=x+x2223x3+x44+

We know the expansion for log(1+x) is,

log(1+x)=xx22+x33x44+x55

So,

log(1+x+x2)=log{1+(x+x2)}=(x+x2)(x+x2)22+(x+x2)33(x+x2)44+(x+x2)55

Lets expand the expressions in the numerator using binomial expansion,

Binomial expansionBinomial expansion

Figure 8.4: Binomial expansion

log(1+x+x2)=(x+x2)(x+x2)22+(x+x2)33(x+x2)44+(x+x2)55=x+x2x2+2x3+x42+x3+3x5+3x4+x63x4+4x5+6x6+4x7+x84+x5+5x6+10x7+10x8+5x9+x105

Bringing together the coefficients of x,x2,x3,x4,x5,

log(1+x+x2)=1x+(112)x2+(1+13)x3+(12+114)x4+(11+15)x5=x+12x223x3+14x4+15x5

8.0.6 Question 5

Prove that sin1x=x+x33!+9x55!+

Let y=sin1x.

y1=11x2(1x2)(y1)2=1

Differentiating w.r.t x,

(1x2)2y1y22x(y1)2=0(1x2)y2xy1=0

Differentiating n times using Leibnitz’s theorem,

yn+2(1x2)+nyn+1(2x)+n(n1)2yn(2)+0(yn+1x+nyn)=0(1x2)yn+22nxyn+1(n2n)ynxyn+1nyn=0(1x2)yn+2(2n+1)xyn+1n2yn=0

Putting x=0,

(yn+2)0=n2(yn)0(y)0=0(y1)0=1(y2)0=0(y3)0=(y1)0=1(y4)0=4(y2)0=0(y5)0=9(y3)0=9

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+sin1x=0+x+0+x33!×1+0+x55!×9+=x+x33!+9x55!+

and hence show that cos1x=π2xx33!

From the formula on inverse sum identities, we know that,

sin1x+cos1x=π2, orcos1x=π2sin1x

We have already found the expansion for sin1x, so,

cos1x=π2xx33!9x55!


8.0.7 Question 6i

Show that xex1=112x+112x21720x4+

We know,

ex=1+x+x22!+x33!+x44!+x55!+ex1=x+x22!+x33!+x44!+x55!+

So,

xex1=xx+x22!+x33!+x44!+x55!+

Let

xex1=a0+a1x+a2x2+a3x3+a4x4+a5x5+

Equating (8.4) and (8.5),

xx+x22!+x33!+x44!+x55!+=a0+a1x+a2x2+a3x3+a4x4+a5x5+x=(a0+a1x+a2x2+a3x3+a4x4+a5x5+)(x+x22!+x33!+x44!+x55!+)

Equating the coefficients of x,x2,x3,x4,x5,

a0=1a02!+a1=0a1=12a03!+a12!+a2=0a2=112a04!+a13!+a22!+a3=0a3=0a05!+a14!+a23!+a32!+a4=0a4=1720

Substituting these values in (8.5), we get

xex1=a0+a1x+a2x2+a3x3+a4x4+a5x5+=112x+112x2+01720x4+=112x+112x21720x4+

8.0.8 Question 6ii

Show that esin1x=1+x+x22!+2x33!+54!x4+

Let y=esin1x.

Differentiating w.r.t x,

y1=esin1x11x2(1x2)(y1)2=y2

Differentiating again w.r.t x,

2y1y2(1x2)2x(y1)2=2yy1(1x2)y2xy1=y

Differentiating n times using Leibnitz’s theorem,

yn+2(1x2)nC12xyn+1nC22ynxyn+1nC1yn=yn(1x2)yn+2(2n+1)xyn+1(n2+1)yn=0

Putting x=0,

(yn+2)0=(n2+1)(yn)0(y)0=e0=1(y1)0=e0=1(y2)0=(y)0=1(y3)0=(12+1)(y1)0=2(y4)0=(22+1)(y2)0=5

Using Maclaurin’s expansion for infinite series,

f(x)=f(0)+xf(0)+x22!f(0)+x33!f(0)+x44!f4(0)+x55!f5(0)+x66!f6(0)+esin1x=1+x+12!x2+23!x3+54!x4+

8.0.9 Question 6iii

If y=emtan1x=a0+a1x+a2x2+a3x3+ show that

  • (1+x2)y1=my

Given equation is y=emtan1x. Differentiating w.r.t x,

y1=emtan1x×m×11+x2y1=y×m×11+x2

(1+x2)y1=my

  • (n+1)an+1+(n1)an1=man

Differentiating equation (8.6) n times using Leibnitz’s theorem, we have,

(1+x2)yn+1+nyn×2x+n(n1)2yn1×2+0=myn

(1+x2)yn+1+2nxyn+n(n1)yn1=myn

(1+x2)yn+1+(2nxm)yn+n(n1)yn1=0

Differentiating equation (8.6) again w.r.t x,

(1+x2)y2+2xy1=my1(1+x2)y2+(2xm)y1=0

Also,

y=a0+a1x+a2x2+a3x3+(y)0=a0y1=a1+2a2x+3a3x2+(y1)0=a1y2=2a2+6a3x+(y2)0=2a2y3=6a3+(y3)0=6a3

Thus a pattern emerges, (yn)0=n!an.

Putting x=0 in (8.7),

(yn+1)0m(yn)0+n(n1)(yn1)0=0(n+1)!an+1mn!an+n(n1)(n1)!an1=0n!(n+1)an+1n!man+(n1)(n1)!nan1=0n!(n+1)an+1n!man+n!(n1)an1=0(n+1)an+1+(n1)an1=man

Also obtain the expansion of emtan1x.

From the derivatives, we have

(y)0=1=a0(y1)0=m(y)0=m=a1(y2)0=m(y1)0=m2=2a2

From nth derivative (8.7), putting n=2,

(y3)0=m(y2)02(y1)0=m×m22m=m(m22)=6a3

So substituting values of a0,a1,a2,a3, in y=a0+a1x+a2x2+a3x3+, we have:

emtan1x=1+mx+m22!x2+m(m22)3!x3+


8.0.10 Question 7

Show that the following functions cannot be expanded in Maclaurin’s infinite series.

  • f(x)=x

f(x)=xf(0)=0f(x)=12xf(0) does not exist

Since f(0) does not exist, so x cannot be expanded in Maclaurin’s infinite series.

  • f(x)=x5/2

f(x)=x5/2f(0)=0f(x)=52x3/2f(0)=0f(x)=52×32x1/2f(0)=0f(x)=52×32×12xf(0) does not exist

Since f(0) does not exist, so x5/2 cannot be expanded in Maclaurin’s infinite series.