Leibnitz’s theorem
Useful for finding nth derivatives of product functions:
If y=uv where u and v are functions of x possessing nth derivatives, then
yn=nC0unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+nCnuvn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvn(uv)(n)(x)=n∑k=0nCku(n−k)(x)v(k)(x),
where nCk=n!k!(n−k)! is the binomial coefficient, u(0)(x)=u(x) and v(0)(x)=v(x).