Limits and Standard derivatives

2 Properties of limits

  • limxa[cf(x)]=climxaf(x)
  • limxa[f(x)±g(x)]=limxaf(x)±limxag(x)
  • limxa[f(x)g(x)]=limxaf(x)limxag(x)
  • limxaf(x)g(x)=limxaf(x)limxag(x) if limxag(x)0
  • limxa[f(x)]n=[limxaf(x)]n
  • limxa[f(x)n]=limxaf(x)n
  • limxac=c
  • limx0sinx=0
  • limx0cosx=1
  • limx0sinxx=1
  • limx0tanxx=1
  • limx0log(1+x)x=1
  • limx0ex=1
  • limx0ex1x=1
  • limx0ax1x=logea
  • limx(1+1x)x=e
  • limx0(1+x)1/x=e
  • limx(1+ax)x=ea
  • limxax=, when a>1
  • limxax=0, when a<1
  • limxaxnanxa=nan1
  • limx0(1+x)n1x=n
  • limnnxn=0, when |x|<1
  • limnxnn!=0
  • limnm(m1)(m2)(mn+1)n!xn=0, when |x|<1

3 Standard derivative rules and formulas

These formulas should be remembered for solving further problems:

  • (cf)=cf(x)
  • ddx(c)=0
  • (f±g)=f(x)±g(x)
  • ddx(xn)=nxn1
  • (fg)=fg+fg Product rule
  • ddx(f(g(x)))=f(g(x))g(x) Chain rule
  • (fg)=fgfgg2 Quotient rule
  • ddx(x)=1
  • ddx(sinx)=cosx
  • ddx(cosx)=sinx
  • ddx(tanx)=sec2x
  • ddx(cscx)=cscxcotx
  • ddx(secx)=secxtanx
  • ddx(cotx)=csc2x
  • ddx(ax)=axlog(a)
  • ddx(ex)=ex
  • ddx(lnx)=1x,x>0
  • ddx(ln|x|)=1x,x0
  • ddx(sin1x)=11x2
  • ddx(cos1x)=11x2
  • ddx(tan1x)=11+x2
  • ddx(csc1x)=1|x|x21
  • ddx(sec1x)=1|x|x21
  • ddx(cot1x)=11+x2
  • ddx(sinhx)=coshx
  • ddx(coshx)=sinhx
  • ddx(tanhx)=sech2x
  • ddx(cschx)=cschxcothx
  • ddx(sechx)=sechxtanhx
  • ddx(cothx)=csch2x
  • ddx(loga(x))=1xlna,x>0

4 Leibnitz’s theorem

Useful for finding nth derivatives of product functions:

If y=uv where u and v are functions of x possessing nth derivatives, then

yn=nC0unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++nCnuvn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn(uv)(n)(x)=k=0nnCku(nk)(x)v(k)(x),

where nCk=n!k!(nk)! is the binomial coefficient, u(0)(x)=u(x) and v(0)(x)=v(x).