Chapter 6 Higher Order Derivatives-II

6.0.1 Leibnitz’s theorem

If y=uv where u and v are functions of x possessing nth derivatives, then

yn=nC0unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++nCnuvn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn(uv)(n)(x)=k=0nnCku(nk)(x)v(k)(x),

where nCk=n!k!(nk)! is the binomial coefficient, u(0)(x)=u(x) and v(0)(x)=v(x).

6.1 Exercise 3 (ii)

6.1.1 Question 1

Find dnydxn if y is

  • x2eax

Here u=eax and v=x2.

While choosing u and v, choose v as one which is likely to result 0 in further differentiation.

u1=aeaxu2=a2eaxu3=a3eaxu4=a4eaxun=aneax

v=x2v1=2xv2=2v3=0vn=0

From Leibnitz’s theorem,

yn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn=aneaxx2+nC1an1eax.2x+nC2an2eax.2++0=aneaxx2+2nan1eaxx+n(n1)2an2eax.2yn=aneaxx2+2nan1eaxx+n(n1)2an2eax.2yn=aneaxx2+2nan1eaxx+n(n1)an2eax

  • x3sinx

Here u=sinx and v=x3

The equation sinx can be represented as sin(1.x+0) so that yn can be derived from the standard form sin(ax+b).

u1=cosxu2=sinxu3=cosxu4=sinxun=1nsin(x+0+nπ2)=sin(x+nπ2)

v=x3v1=3x2v2=6xv3=6v4=0vn=0

From Leibnitz’s theorem,

yn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn=sin(x+nπ2).x3+n.sin(x+(n1)π2).3x2+n(n1)2.sin(x+(n2)π2).6x+n(n1)(n2)6sin(x+(n3)π2).6+0++0yn=x3sin(x+nπ2)+3nx2sin(x+(n1)π2)+3n(n1)xsin(x+(n2)π2)+n(n1)(n2)sin(x+(n3)π2)

  • x3logx

u=logxu1=1xu2=1x2u3=2x3u4=6x4un=(1)n1(n1)!xn

v=x3v1=3x2v2=6xv3=6v4=0vn=0

From Leibnitz’s theorem,

yn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvnyn=(1)n1(n1)!xn.x3+n.(1)n2(n2)!xn1.3x2+n(n1)2(1)n3(n3)!xn2.6x+n(n1)(n2)6(1)n4(n4)!xn3.6+0++0yn=(1)nxn3[(n1)!(1)1+3n(n2)!(1)2+3n(n1)(n3)!(1)3+n(n1)(n2)(n4)!(1)4]

  • xnex

u1=exu2=exu3=exu4=exun=ex

v=xnv1=nxn1v2=n(n1)xn2v3=n(n1)(n2)xn3v4=n(n1)(n2)(n3)xn4vn=n!

The n1 times differentiation of xn1 is (n1)!. Similarly n-times differentiation of xn is n!.

From Leibnitz’s theorem,

yn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn=exxn+n.ex.nxn1+n(n1)2.ex.n(n1)xn2+n(n1)(n2)6.ex.n(n1)(n2)xn3++ex.n!

yn=ex[xn+n2xn11!+n2(n1)2xn22!+n2(n1)2(n2)2xn33!++n!]=ex[xn+n2xn11!+n2(n1)2xn22!+n2(n1)2(n2)2xn33!++(n!)2n!]yn=ex[xn+n2xn11!+n2(n1)2xn22!+n2(n1)2(n2)2xn33!++n2(n1)2(n2)2(n3)212n!]

  • eaxcosbx

u=eaxun=aneax

v=cosbxvn=bncos(bx+nπ2)

From Leibnitz’s theorem,

yn=unv+nC1un1v1+nC2un2v2+nC3un3v3++nCrunrvr++uvn=aneaxcosbx+nC1an1eax.b1cos(bx+1π2)+nC2an2eax.b2cos(bx+2π2)++eax.bncos(bx+nπ2)

yn=eax[ancosbx+nC1an1bcos(bx+π2)+nC2an2b2cos(bx+2π2)++bncos(bx+nπ2)]

6.1.2 Question 2

If y=xn1logx, show that xyn=(n1)!.

Given equation is:

(6.1)y=xn1logx

Differentiating w.r.t x,

y1=xn1x+logx(n1)xn2=xn1x+logx(n1)xn1x

From (6.1),

y1=xn1x+y(n1)xxy1=xn1+(n1)yxy1(n1)y=xn1

Differentiating it n1 times using Leibnitz’s theorem,

n1C0y1+(n1)x+n1C1yn1×1+0(n1)yn1=(n1)!

1×xyn+(n1)!1!(n2)!yn1(n1)yn1=(n1)!xyn+(n1)yn1(n1)yn1=(n1)!xyn=(n1)!

Hence proved.

The n1 times differentiation of xn1 is (n1)!. Similarly n-times differentiation of xn is n!.

6.1.3 Question 3

If y=ex2, prove that yn+12xyn2nyn1=0.

Plotting reveals this graph:

Taking log and differentiating w.r.t x,

logy=x2loge1yy1=2xy1=2xy

Differentiating n-times using Leibnitz’s theorem,

yn+1=2[ynx+nC1yn1×1+0]yn+1=2[ynx+nyn1]yn+12xyn2nyn1=0

Hence proved.

6.1.4 Question 4

If y=eaxsinbx, show that

  • y22ay1+(a2+b2)y=0

Differentiating w.r.t x,

y1=eax.bcosbx+sinbx.aeaxy1=beaxcosbx+aeaxsinbx

Substituting original equation,

(6.2)y1=beaxcosbx+ay

Again, differentiating w.r.t x,

y2=b[aeaxcosbxbeaxsinbx]+ay1

From original equation and (6.2),

y2=b[aeaxcosbxby]+ay1=b[a×y1aybby]+ay1y2=ay1a2yb2y+ay1

(6.3)y22ay1+(a2+b2)y=0

  • yn+1=2ayn(a2+b2)yn1

Differentiating n1 times (6.3) w.r.t x using Leibnitz’s theorem,

y(n1)+22ay(n1)+1+(a2+b2)yn1=0yn+12ayn+(a2+b2)yn1=0yn+1=2ayn(a2+b2)yn1

6.1.5 Question 5

If y=acos(logx)+bsin(logx), prove that

  • x2y2+xy1+y=0

Given equation is,

(6.4)y=acos(logx)+bsin(logx)

Differentiating w.r.t x,

y1=asin(logx)x+bcos(logx)x

which can also be written as,

(6.5)xy1=bcos(logx)asin(logx)

Differentiating (6.5) again w.r.t x,

xy2+y1=bsin(logx)xacoslogxxx2y2+xy1=(acos(logx)+bsin(logx))

From original equation (6.4),

x2y2+xy1=(y)

(6.6)x2y2+xy1+y=0

Hence proved.

  • x2yn+2+(2n+1)xyn+1+(n2+1)yn=0

Differentiating n times (6.6) using Leibnitz’s theorem,

yn+2.x2+n.yn+1.2x+n(n1)2yn.2+0+yn+1.x+nyn×1+0+yn=0

x2yn+2+(2n+1)xyn+1+(n2n+n+1)yn=0x2yn+2+(2n+1)xyn+1+(n2+1)yn=0

Hence proved.

6.1.6 Question 6

If y=log(x+a2+x2), show that

  • (a2+x2)y2+xy1=0

Differentiating w.r.t x,

y1=1x+a2+x2×[1+2x2a2+x2]=1x+a2+x2×[1+xa2+x2]=1x+a2+x2×[x+a2+x2a2+x2]y1=1a2+x2

(6.7)y1=1a2+x2

Differentiating again the equation (6.7),

y2=12(a2+x2)3/2×2xy2=x(a2+x2)3/2y2=xa2+x2(a2+x2)

From (6.7),

y2=xy1a2+x2

(6.8)(a2+x2)y2+xy1=0

Hence proved.

  • and hence show that (a2+x2)yn+2+(2n+1)xyn+1+n2yn=0.

Differentiating (6.8) n-times w.r.t x,

yn+2(a2+x2)+nyn+1.2x+n(n1)2yn.2+0+yn+1.x+nyn×1=0

(a2+x2)yn+2+(2n+1)xyn+1+(n2n+n)yn=0(a2+x2)yn+2+(2n+1)xyn+1+n2yn=0

6.1.7 Question 7

If y=sin1x, show that

  • (1x2)y2xy1=0

Differentiating y=sin1x w.r.t x,

(6.9)y1=11x2

Differentiating again w.r.t x,

y2=12×2x1x2(1x2)y2=x1x2(1x2)

Substituting from (6.9),

y2=xy11x2(1x2)y2xy1=0

(6.10)(1x2)y2xy1=0

Thus proved.

  • (1x2)yn+2(2n+1)xyn+1n2yn=0

Differentiating n-times (6.10),

yn+2(1x2)nyn+1.2xn(n1)2yn.2+0yn+1xnyn×1+0=0(1x2)yn+2(2n+1)xyn+1(n2n+n)yn=0

(6.11)(1x2)yn+2(2n+1)xyn+1n2yn=0

  • (yn+2)0=n2(yn)0. Find also the value of (yn)0.

Putting value of x=0 in (6.11) we get,

(6.12)(yn+2)0=n2(yn)0

Putting x=0 in (6.9), we get (y1)0=1.

Putting x=0 in (6.10), we get (y2)0=0.

From (6.12), we get (y3)0=12(y1)0=12.1=1.

From (6.12), we get (y4)0=22(y2)0=0.

From (6.12), we get (y5)0=32(y3)0=32.12.

From (6.12), we get (y6)0=42(y4)0=0.

From (6.12), we get (y7)0=52(y5)0=52.32.12.

Thus when n is even (yn)0 is 0. And when n is odd, (yn)0 is (n2)2(n4)2(n6)252.32.12.

6.1.8 Question 8

Find yn(0) if y=easin1x.

Given equation is

(6.13)y=easin1x

Taking log and differentiating both sides,

logy=asin1x1yy1=a1x2y11x2=ay

Squaring both sides,

(6.14)y12(1x2)=a2y2

Differentiating w.r.t x,

(1x2)2y1×y2y12×2x=a2×2y×y1

Dividing both sides by 2y1,

(6.15)(1x2)y2xy1a2y=0

Differentiating n-times using Leibnitz’s theorem,

yn+2(1x2)+nyn+1×(2x)+n(n1)2yn×(2)+0[yn+1x+nyn×1+0]a2yn=0(1x2)yn+22nxyn+1(n2n)yn+0xyn+1nyna2yn=0(1x2)yn+2(2n+1)xyn+1(n2n+n+a2)yn=0

(6.16)(1x2)yn+2(2n+1)xyn+1(n2+a2)yn=0

Putting x=0 in (6.13), we get (y)0=1.

Putting x=0 in (6.14), we get (y1)0=a.(y)0=a.1=a.

Putting x=0 in (6.15), we get (y2)0=a2(y)0=a2.

Putting x=0 in (6.16), we get

(6.17)(yn+2)0=(n2+a2)(yn)0

From (6.17),

(y3)0=(y1+2)0=(12+a2)(y1)0=(12+a2).a(y4)0=(y2+2)0=(22+a2)(y2)0=(22+a2).a2(y5)0=(y3+2)0=(32+a2)(y3)0=(32+a2)(12+a2)a(y6)0=(y4+2)0=(42+a2)(y4)0=(42+a2)(22+a2).a2(y7)0=(y5+2)0=(52+a2)(y5)0=(52+a2)(32+a2)(12+a2)a

Thus when n is odd, (yn)0=[(n2)2+a2][(n4)2+a2][(n6)2+a2](12+a2).a.

And when n is even, (yn)0=[(n2)2+a2][(n4)2+a2][(n6)2+a2](22+a2).a2.

6.1.9 Question 9

If y=(x+1+x2)m, show that (1+x2)y2+xy1m2y=0 and hence prove that (1+x2)yn+2+(2n+1)xyn+1+(n2m2)yn=0.

Given equation is,

(6.18)y=(x+1+x2)m

Differentiating w.r.t x,

y1=m(x+1+x2)m1×[1+2x21+x2]y1=m(x+1+x2)mx+1+x2×x+1+x21+x2

From (6.18),

(6.19)y1=my1+x2

Differentiating again w.r.t x,

y2=m[y11+x2y×2x21+x2(1+x2)]

From (6.19),

y2=m[y1×myy1xy×y1my1+x2](1+x2)y2=m(myxy1m)(1+x2)y2=m(m2yxy1)m(1+x2)y2+xy1m2y=0

Differentiating n-times using Leibnitz’s theorem,

yn+2(1+x2)+n.yn+1×2x+n(n1)2.yn×2+0+yn+1x+nyn×1+0m2yn=0

(1+x2)yn+2+(2n+1)xyn+1+(n2n)yn+nynm2yn=0(1+x2)yn+2+(2n+1)xyn+1+(n2m2)yn=0

6.1.10 Question 10

If y1/m+y1/m=2x, show that (x21)yn+2+(2n+1)xyn+1+(n2m2)yn=0.

Given equation is:

(6.20)y1/m+y1/m=2x

Differentiating w.r.t x,

1my1m1y11my1m1y1=21m(y1/myy1/my)y1=2(y1/my1/m)y1=2myy1(y1/my1/m)2=2myy1(y1/m+y1/m)24y1/my1/m=2myy1(y1/m+y1/m)24=2my

From (6.20),

y1(2x)24=2myy14x24=2my

Squaring both sides,

y12(4x24)=4m2y2(x21)y12=m2y2

Differentiating w.r.t x,

(x21)2y1y2+y12.2x=m2.2y.y1

Dividing both sides by 2y1,

(6.21)(x21)y2+xy1=m2y

Differentiating n times (6.21) using Leibnitz’s theorem,

yn+2(x21)+nyn+1.2x+n(n1)2yn.2+0+yn+1.x+nyn×1+0=m2yn

(x21)yn+2+(2n+1)xyn+1+(n2n)yn+nynm2yn=0(x21)yn+2+(2n+1)xyn+1+(n2m2)yn=0

6.1.11 Question 11 (TU 2061)

If y=(sin1x)2, prove that:

  • (1x2)d2ydx2xdydx2=0

Differentiating y=(sin1x)2 w.r.t x,

y1=2sin1x1x2

Squaring both sides,

y12=4(sin1x)21x2

From initial equation,

y12=4y1x2y12(1x2)=4y

Differentiating again w.r.t x,

(1x2).2y1y22xy12=4y1

Dividing both sides by 2y1,

(1x2)y2xy1=2(1x2)y2xy12=0(1x2)d2ydx2xdydx2=0

(6.22)(1x2)y2xy12=0

  • (1x2)yn+2(2n+1)xyn+1x2yn=0

Differentiating (6.22) n-times w.r.t x,

yn+2(1x2)nyn+1.2xn(n1)2yn.2+0[yn+1.x+nyn×1+0]0=0

(1x2)yn+2(2n+1)xyn+1(n2n)ynnyn=0(1x2)yn+2(2n+1)xyn+1n2yn=0

6.1.12 Question 12

If y=sin(msin1x), prove that:

  • (1x2)y2xy1+m2y=0

(6.23)y=sin(msin1x)

Differentiating (6.23) w.r.t x,

y1=mcos(msin1x)11x2

Squaring both sides,

(1x2)y12=m2cos2(msin1x)=m2[1sin2(msin1x)]

From (6.23),

(1x2)y12=m2(1y2)

Differentiating again w.r.t x,

(1x2)2y1y22xy12=m2(02yy1)(1x2)2y1y22xy12+2m2yy1=0

Dividing both sides by 2y1,

(6.24)(1x2)y2xy1+m2y=0

  • (1x2)yn+2(2n+1)xyn+1+(m2n2)yn=0

Differentiating (6.24) n-times w.r.t x,

yn+2(1x2)+nyn+1×(2x)+n(n1)2yn×(2)+0[yn+1x+nyn×1+0]+m2yn=0(1x2)yn+22nxyn+1(n2n)ynxyn+1nyn+m2yn=0(1x2)yn+2(2n+1)xyn+1(m2n2+nn)yn=0

(1x2)yn+2(2n+1)xyn+1(m2n2)yn=0

Hence proved.

6.1.13 Question 13 (TU 2064)

If logy=tan1x, show that (1+x2)y2+(2x1)y1=0.

Differentiating w.r.t x,

1yy1=11+x2y1(1+x2)=y

Differentiating again w.r.t x,

(6.25)(1+x2)y2+(2x1)y1=0

Differentiate this differential equation n times.

Differentiating (6.25) n-times,

yn+2(1+x2)+nyn+1.2x+n(n1)2.yn.2+0+yn+1(2x1)+nyn.2+0=0(1+x2)yn+2+2nxyn+1+(2x1)yn+1+(n2n)yn+2nyn=0(1+x2)yn+2+(2nx+2x1)yn+1+(n2+n)yn=0

(1+x2)yn+2+(2nx+2x1)yn+1+n(n+1)yn=0