Exercise 3 (ii)
Question 1
Find dnydxn if y is
Here u=eax and v=x2.
While choosing u and v, choose v as one which is likely to result 0 in further differentiation.
u1=aeaxu2=a2eaxu3=a3eaxu4=a4eax⋮un=aneax
v=x2v1=2xv2=2v3=0⋮vn=0
From Leibnitz’s theorem,
yn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvn=aneaxx2+nC1an−1eax.2x+nC2an−2eax.2+…+0=aneaxx2+2nan−1eaxx+n(n−1)2an−2eax.2yn=aneaxx2+2nan−1eaxx+n(n−1)2an−2eax.2yn=aneaxx2+2nan−1eaxx+n(n−1)an−2eax
Here u=sinx and v=x3
The equation sinx can be represented as sin(1.x+0) so that yn can be derived from the standard form sin(ax+b).
u1=cosxu2=−sinxu3=−cosxu4=sinx⋮un=1nsin(x+0+nπ2)=sin(x+nπ2)
v=x3v1=3x2v2=6xv3=6v4=0⋮vn=0
From Leibnitz’s theorem,
yn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvn=sin(x+nπ2).x3+n.sin(x+(n−1)π2).3x2+n(n−1)2.sin(x+(n−2)π2).6x+n(n−1)(n−2)6sin(x+(n−3)π2).6+0+…+0yn=x3sin(x+nπ2)+3nx2sin(x+(n−1)π2)+3n(n−1)xsin(x+(n−2)π2)+n(n−1)(n−2)sin(x+(n−3)π2)
u=logxu1=1xu2=−1x2u3=2x3u4=−6x4⋮un=(−1)n−1(n−1)!xn
v=x3v1=3x2v2=6xv3=6v4=0⋮vn=0
From Leibnitz’s theorem,
yn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvnyn=(−1)n−1(n−1)!xn.x3+n.(−1)n−2(n−2)!xn−1.3x2+n(n−1)2(−1)n−3(n−3)!xn−2.6x+n(n−1)(n−2)6(−1)n−4(n−4)!xn−3.6+0+…+0yn=(−1)nxn−3[(n−1)!(−1)1+3n(n−2)!(−1)2+3n(n−1)(n−3)!(−1)3+n(n−1)(n−2)(n−4)!(−1)4]
u1=exu2=exu3=exu4=ex⋮un=ex
v=xnv1=nxn−1v2=n(n−1)xn−2v3=n(n−1)(n−2)xn−3v4=n(n−1)(n−2)(n−3)xn−4⋮vn=n!
The n−1 times differentiation of xn−1 is (n−1)!. Similarly n-times differentiation of xn is n!.
From Leibnitz’s theorem,
yn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvn=exxn+n.ex.nxn−1+n(n−1)2.ex.n(n−1)xn−2+n(n−1)(n−2)6.ex.n(n−1)(n−2)xn−3+…+ex.n!
yn=ex[xn+n2xn−11!+n2(n−1)2xn−22!+n2(n−1)2(n−2)2xn−33!+…+n!]=ex[xn+n2xn−11!+n2(n−1)2xn−22!+n2(n−1)2(n−2)2xn−33!+…+(n!)2n!]yn=ex[xn+n2xn−11!+n2(n−1)2xn−22!+n2(n−1)2(n−2)2xn−33!+…+n2(n−1)2(n−2)2(n−3)2…12n!]
u=eaxun=aneax
v=cosbxvn=bncos(bx+nπ2)
From Leibnitz’s theorem,
yn=unv+nC1un−1v1+nC2un−2v2+nC3un−3v3+…+nCrun−rvr+…+uvn=aneaxcosbx+nC1an−1eax.b1cos(bx+1π2)+nC2an−2eax.b2cos(bx+2π2)+…+eax.bncos(bx+nπ2)
yn=eax[ancosbx+nC1an−1bcos(bx+π2)+nC2an−2b2cos(bx+2π2)+…+bncos(bx+nπ2)]
Question 2
If y=xn−1logx, show that xyn=(n−1)!.
Given equation is:
y=xn−1logx(6.1)
Differentiating w.r.t x,
y1=xn−1x+logx(n−1)xn−2=xn−1x+logx(n−1)xn−1x
From (6.1),
y1=xn−1x+y(n−1)xxy1=xn−1+(n−1)yxy1−(n−1)y=xn−1
Differentiating it n−1 times using Leibnitz’s theorem,
n−1C0y1+(n−1)x+n−1C1yn−1×1+0−(n−1)yn−1=(n−1)!
1×xyn+(n−1)!1!(n−2)!yn−1−(n−1)yn−1=(n−1)!xyn+(n−1)yn−1−(n−1)yn−1=(n−1)!xyn=(n−1)!
Hence proved.
The n−1 times differentiation of xn−1 is (n−1)!. Similarly n-times differentiation of xn is n!.
Question 3
If y=ex2, prove that yn+1−2xyn−2nyn−1=0.
Plotting reveals this graph:

Taking log and differentiating w.r.t x,
logy=x2loge1yy1=2xy1=2xy
Differentiating n-times using Leibnitz’s theorem,
yn+1=2[ynx+nC1yn−1×1+0]yn+1=2[ynx+nyn−1]yn+1−2xyn−2nyn−1=0
Hence proved.
Question 4
If y=eaxsinbx, show that
- y2−2ay1+(a2+b2)y=0
Differentiating w.r.t x,
y1=eax.bcosbx+sinbx.aeaxy1=beaxcosbx+aeaxsinbx
Substituting original equation,
y1=beaxcosbx+ay(6.2)
Again, differentiating w.r.t x,
y2=b[aeaxcosbx−beaxsinbx]+ay1
From original equation and (6.2),
y2=b[aeaxcosbx−by]+ay1=b[a×y1−ayb−by]+ay1y2=ay1−a2y−b2y+ay1
y2−2ay1+(a2+b2)y=0(6.3)
- yn+1=2ayn−(a2+b2)yn−1
Differentiating n−1 times (6.3) w.r.t x using Leibnitz’s theorem,
y(n−1)+2−2ay(n−1)+1+(a2+b2)yn−1=0yn+1−2ayn+(a2+b2)yn−1=0yn+1=2ayn−(a2+b2)yn−1
Question 5
If y=acos(logx)+bsin(logx), prove that
Given equation is,
y=acos(logx)+bsin(logx)(6.4)
Differentiating w.r.t x,
y1=−asin(logx)x+bcos(logx)x
which can also be written as,
xy1=bcos(logx)−asin(logx)(6.5)
Differentiating (6.5) again w.r.t x,
xy2+y1=−bsin(logx)x−acoslogxxx2y2+xy1=−(acos(logx)+bsin(logx))
From original equation (6.4),
x2y2+xy1=−(y)
x2y2+xy1+y=0(6.6)
Hence proved.
- x2yn+2+(2n+1)xyn+1+(n2+1)yn=0
Differentiating n times (6.6) using Leibnitz’s theorem,
yn+2.x2+n.yn+1.2x+n(n−1)2yn.2+0+yn+1.x+nyn×1+0+yn=0
x2yn+2+(2n+1)xyn+1+(n2−n+n+1)yn=0x2yn+2+(2n+1)xyn+1+(n2+1)yn=0
Hence proved.
Question 6
If y=log(x+√a2+x2), show that
- (a2+x2)y2+xy1=0
Differentiating w.r.t x,
y1=1x+√a2+x2×[1+2x2√a2+x2]=1x+√a2+x2×[1+x√a2+x2]=1x+√a2+x2×[x+√a2+x2√a2+x2]y1=1√a2+x2
y1=1√a2+x2(6.7)
Differentiating again the equation (6.7),
y2=−12(a2+x2)−3/2×2xy2=−x(a2+x2)3/2y2=−x√a2+x2(a2+x2)
From (6.7),
y2=−xy1a2+x2
(a2+x2)y2+xy1=0(6.8)
Hence proved.
- and hence show that (a2+x2)yn+2+(2n+1)xyn+1+n2yn=0.
Differentiating (6.8) n-times w.r.t x,
yn+2(a2+x2)+nyn+1.2x+n(n−1)2yn.2+0+yn+1.x+nyn×1=0
(a2+x2)yn+2+(2n+1)xyn+1+(n2−n+n)yn=0(a2+x2)yn+2+(2n+1)xyn+1+n2yn=0
Question 7
If y=sin−1x, show that
- (1−x2)y2−xy1=0
Differentiating y=sin−1x w.r.t x,
y1=1√1−x2(6.9)
Differentiating again w.r.t x,
y2=−12×−2x√1−x2(1−x2)y2=x√1−x2(1−x2)
Substituting from (6.9),
y2=xy11−x2(1−x2)y2−xy1=0
(1−x2)y2−xy1=0(6.10)
Thus proved.
- (1−x2)yn+2−(2n+1)xyn+1−n2yn=0
Differentiating n-times (6.10),
yn+2(1−x2)−nyn+1.2x−n(n−1)2yn.2+0−yn+1x−nyn×1+0=0(1−x2)yn+2−(2n+1)xyn+1−(n2−n+n)yn=0
(1−x2)yn+2−(2n+1)xyn+1−n2yn=0(6.11)
- (yn+2)0=n2(yn)0. Find also the value of (yn)0.
Putting value of x=0 in (6.11) we get,
(yn+2)0=n2(yn)0(6.12)
Putting x=0 in (6.9), we get (y1)0=1.
Putting x=0 in (6.10), we get (y2)0=0.
From (6.12), we get (y3)0=12(y1)0=12.1=1.
From (6.12), we get (y4)0=22(y2)0=0.
From (6.12), we get (y5)0=32(y3)0=32.12.
From (6.12), we get (y6)0=42(y4)0=0.
From (6.12), we get (y7)0=52(y5)0=52.32.12.
Thus when n is even (yn)0 is 0. And when n is odd, (yn)0 is (n−2)2(n−4)2(n−6)2…52.32.12.
Question 8
Find yn(0) if y=easin−1x.
Given equation is
y=easin−1x(6.13)
Taking log and differentiating both sides,
logy=asin−1x1yy1=a√1−x2y1√1−x2=ay
Squaring both sides,
y12(1−x2)=a2y2(6.14)
Differentiating w.r.t x,
(1−x2)2y1×y2−y12×2x=a2×2y×y1
Dividing both sides by 2y1,
(1−x2)y2−xy1−a2y=0(6.15)
Differentiating n-times using Leibnitz’s theorem,
yn+2(1−x2)+nyn+1×(−2x)+n(n−1)2yn×(−2)+0−[yn+1x+nyn×1+0]−a2yn=0(1−x2)yn+2−2nxyn+1−(n2−n)yn+0−xyn+1−nyn−a2yn=0(1−x2)yn+2−(2n+1)xyn+1−(n2−n+n+a2)yn=0
(1−x2)yn+2−(2n+1)xyn+1−(n2+a2)yn=0(6.16)
Putting x=0 in (6.13), we get (y)0=1.
Putting x=0 in (6.14), we get (y1)0=a.(y)0=a.1=a.
Putting x=0 in (6.15), we get (y2)0=a2(y)0=a2.
Putting x=0 in (6.16), we get
(yn+2)0=(n2+a2)(yn)0(6.17)
From (6.17),
(y3)0=(y1+2)0=(12+a2)(y1)0=(12+a2).a(y4)0=(y2+2)0=(22+a2)(y2)0=(22+a2).a2(y5)0=(y3+2)0=(32+a2)(y3)0=(32+a2)(12+a2)a(y6)0=(y4+2)0=(42+a2)(y4)0=(42+a2)(22+a2).a2(y7)0=(y5+2)0=(52+a2)(y5)0=(52+a2)(32+a2)(12+a2)a
Thus when n is odd, (yn)0=[(n−2)2+a2][(n−4)2+a2][(n−6)2+a2]…(12+a2).a.
And when n is even, (yn)0=[(n−2)2+a2][(n−4)2+a2][(n−6)2+a2]…(22+a2).a2.
Question 9
If y=(x+√1+x2)m, show that (1+x2)y2+xy1−m2y=0 and hence prove that (1+x2)yn+2+(2n+1)xyn+1+(n2−m2)yn=0.
Given equation is,
y=(x+√1+x2)m(6.18)
Differentiating w.r.t x,
y1=m(x+√1+x2)m−1×[1+2x2√1+x2]y1=m(x+√1+x2)mx+√1+x2×x+√1+x2√1+x2
From (6.18),
y1=my√1+x2(6.19)
Differentiating again w.r.t x,
y2=m⎡⎢⎣y1√1+x2−y×2x2√1+x2(1+x2)⎤⎥⎦
From (6.19),
y2=m[y1×myy1−xy×y1my1+x2](1+x2)y2=m(my−xy1m)(1+x2)y2=m(m2y−xy1)m(1+x2)y2+xy1−m2y=0
Differentiating n-times using Leibnitz’s theorem,
yn+2(1+x2)+n.yn+1×2x+n(n−1)2.yn×2+0+yn+1x+nyn×1+0−m2yn=0
(1+x2)yn+2+(2n+1)xyn+1+(n2−n)yn+nyn−m2yn=0(1+x2)yn+2+(2n+1)xyn+1+(n2−m2)yn=0
Question 10
If y1/m+y−1/m=2x, show that (x2−1)yn+2+(2n+1)xyn+1+(n2−m2)yn=0.
Given equation is:
y1/m+y−1/m=2x(6.20)
Differentiating w.r.t x,
1my1m−1y1−1my−1m−1y1=21m(y1/my−y−1/my)y1=2(y1/m−y−1/m)y1=2myy1√(y1/m−y−1/m)2=2myy1√(y1/m+y−1/m)2−4y1/my−1/m=2myy1√(y1/m+y−1/m)2−4=2my
From (6.20),
y1√(2x)2−4=2myy1√4x2−4=2my
Squaring both sides,
y12(4x2−4)=4m2y2(x2−1)y12=m2y2
Differentiating w.r.t x,
(x2−1)2y1y2+y12.2x=m2.2y.y1
Dividing both sides by 2y1,
(x2−1)y2+xy1=m2y(6.21)
Differentiating n times (6.21) using Leibnitz’s theorem,
yn+2(x2−1)+nyn+1.2x+n(n−1)2yn.2+0+yn+1.x+nyn×1+0=m2yn
(x2−1)yn+2+(2n+1)xyn+1+(n2−n)yn+nyn−m2yn=0(x2−1)yn+2+(2n+1)xyn+1+(n2−m2)yn=0
Question 11 (TU 2061)
If y=(sin−1x)2, prove that:
- (1−x2)d2ydx2−xdydx−2=0
Differentiating y=(sin−1x)2 w.r.t x,
y1=2sin−1x√1−x2
Squaring both sides,
y12=4(sin−1x)21−x2
From initial equation,
y12=4y1−x2y12(1−x2)=4y
Differentiating again w.r.t x,
(1−x2).2y1y2−2xy12=4y1
Dividing both sides by 2y1,
(1−x2)y2−xy1=2(1−x2)y2−xy1−2=0(1−x2)d2ydx2−xdydx−2=0
(1−x2)y2−xy1−2=0(6.22)
- (1−x2)yn+2−(2n+1)xyn+1−x2yn=0
Differentiating (6.22) n-times w.r.t x,
yn+2(1−x2)−nyn+1.2x−n(n−1)2yn.2+0−[yn+1.x+nyn×1+0]−0=0
(1−x2)yn+2−(2n+1)xyn+1−(n2−n)yn−nyn=0(1−x2)yn+2−(2n+1)xyn+1−n2yn=0
Question 12
If y=sin(msin−1x), prove that:
- (1−x2)y2−xy1+m2y=0
y=sin(msin−1x)(6.23)
Differentiating (6.23) w.r.t x,
y1=mcos(msin−1x)1√1−x2
Squaring both sides,
(1−x2)y12=m2cos2(msin−1x)=m2[1−sin2(msin−1x)]
From (6.23),
(1−x2)y12=m2(1−y2)
Differentiating again w.r.t x,
(1−x2)2y1y2−2xy12=m2(0−2yy1)(1−x2)2y1y2−2xy12+2m2yy1=0
Dividing both sides by 2y1,
(1−x2)y2−xy1+m2y=0(6.24)
- (1−x2)yn+2−(2n+1)xyn+1+(m2−n2)yn=0
Differentiating (6.24) n-times w.r.t x,
yn+2(1−x2)+nyn+1×(−2x)+n(n−1)2yn×(−2)+0−[yn+1x+nyn×1+0]+m2yn=0(1−x2)yn+2−2nxyn+1−(n2−n)yn−xyn+1−nyn+m2yn=0(1−x2)yn+2−(2n+1)xyn+1−(m2−n2+n−n)yn=0
(1−x2)yn+2−(2n+1)xyn+1−(m2−n2)yn=0
Hence proved.
Question 13 (TU 2064)
If logy=tan−1x, show that (1+x2)y2+(2x−1)y1=0.
Differentiating w.r.t x,
1yy1=11+x2y1(1+x2)=y
Differentiating again w.r.t x,
(1+x2)y2+(2x−1)y1=0(6.25)
Differentiate this differential equation n times.
Differentiating (6.25) n-times,
yn+2(1+x2)+nyn+1.2x+n(n−1)2.yn.2+0+yn+1(2x−1)+nyn.2+0=0(1+x2)yn+2+2nxyn+1+(2x−1)yn+1+(n2−n)yn+2nyn=0(1+x2)yn+2+(2nx+2x−1)yn+1+(n2+n)yn=0
(1+x2)yn+2+(2nx+2x−1)yn+1+n(n+1)yn=0