Chapter 13 Asymptotes-I
- Total number of asymptotes cannot exceed the highest degree of the equation.
- It is not necessary that all the curves have asymptotes.
- If a curve of nth degree has n asymptotes, then they cut the curve in n(n−2) points.
Tips on finding vertical and horizontal asymptotes can be found here.
13.1 Exercise 7
13.1.1 Question 1
Find the asymptotes of the curves
- y=x(x−1)2(x−2)
Here, y→∞, when x→1.
Also, y→∞, when x→2, y→0 when x→∞.
So, there are three asymptotes.
x=1x=2y=0
- y=x2x2+1
The equation is of degree 3. Here x3 is absent, so asymptotes parallel to x-axis is obtained by equating to zero the coefficients of highest degree term in x.
y−1=0y=1
Also y3 is absent, so asymptotes parallel to y-axis is obtained by equating to zero the coefficients of highest degree term in y.
x2+1=0
This doesn’t have real roots. So y=1 is the only asymptote.
In other words, there is no value of x such that y→∞. So, the equation doesn’t have vertical asymptote, horizontal asymptote only despite the degree of equation being 3.
- y=4x2+4x−3x2−4x+3
The equation can be written as y=(2x+3)(2x−1)(x−1)(x−3).
Here, y→∞, when x→1, y→∞, when x→3 and y→4, when x→∞.
So asymptotes are,
x=1x=3y=4
- y=x2+2x−1x
The function is a rational function and is improper. Trying to reduce fraction reveal difficult to manipulate roots of the numerator. So, no attempt is being made to reduce it further.
Here, y→∞, when x→0.
Also, y→∞, when x→∞. Hence, there is no asymptote parallel to x-axis.
To obtain oblique asymptote of form y=mx+c, we know,
m=lim
Also,
\begin{equation*} \begin{split} c &= \lim_{x \to \infty} (y - mx)\\ &= \lim_{x \to \infty} (y - x)\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + 2x -1}{x} - x\right)\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + 2x -1 -x^2}{x}\right)\\ &= \lim_{x \to \infty} \left(2 -\dfrac{1}{x}\right)\\ c &= 2 \end{split} \end{equation*}
The oblique asymptote is thus y = x+2.
All symptotes of the given equation are thus,
\begin{equation*} \begin{split} x &= 0\\ y &= x +2 \end{split} \end{equation*}
- y = \dfrac{2x -3}{x^2 - 3x + 2}
The equation has degree 3. So it can have maximum of three asymptotes. It can be written as y = \dfrac{2x-3}{(x-1)(x-2)}.
Here, y \rightarrow \infty, when x \rightarrow 1 and x \rightarrow 2. Also y \rightarrow 0, when x \rightarrow \infty. It cannot have more than 3 asymptotes because the degree is 3. No need to proceed further. Thus the asymptotes are,
\begin{equation*} \begin{split} x &= 0\\ x &= 1\\ x &= 2 \end{split} \end{equation*}
- y = \dfrac{(x+2)^2 (x-3)}{x-1}
Here, y \rightarrow \infty, when x \rightarrow 1.
Also, y \rightarrow \infty, when x \rightarrow \infty. So no asymptotes parallel to x-axis.
To find oblique asymptote,
\begin{equation*} \begin{split} m &= \lim_{x \to \infty} \dfrac{y}{x}\\ m &= \lim_{x \to \infty} \dfrac{\dfrac{x^3 + x^2 - 8x -12}{x-1}}{x}\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + x-8 - \frac{12}{x}}{x -1}\right)\\ &= \lim_{x \to \infty} \left(\dfrac{x + 1 - \frac{8}{x}- \frac{12}{x^2}}{1 - \frac{1}{x}}\right)\\ &= \infty \end{split} \end{equation*}
Thus, m is infinite. So, it does not have oblique asymptote. The only asymptote is x=1.
- y= \dfrac{x^2 + 1}{1 + x}
The equation can be written as y = 1 + x - \dfrac{2x}{1 + x}.
Here, y \rightarrow \infty, when x \rightarrow -1.
Also, y \rightarrow \infty, when x \rightarrow \infty, So, no asymptotes parallel to x-axis.
For oblique asymptote of form y = mx + c,
\begin{equation*} \begin{split} m &= \lim_{x \to \infty} \dfrac{y}{x}\\ m &= \lim_{x \to \infty} \left(\frac{1}{x} + 1 - \frac{2}{1+x}\right)\\ m &= 1\\ c &= \lim_{x \to \infty} (y - mx)\\ &= \lim_{x \to \infty} (y - x)\\ &= \lim_{x \to \infty} \left(1 - \frac{2x}{1+x}\right)\\ &= -1 \end{split} \end{equation*}
Oblique asymptote is therefore y = x -1.
So all asymptotes of the equation are,
\begin{equation*} \begin{split} x + 1 &= 0\\ y &= x-1 \end{split} \end{equation*}
- y = \dfrac{x}{x^2 -1}
It can be written as y = \dfrac{x}{(x+1)(x-1)}.
Here, y \rightarrow \infty, when x \rightarrow 1 and x \rightarrow -1. Also, y \rightarrow 0, when x \rightarrow \infty.
The asymptotes are thus,
\begin{equation*} \begin{split} x &= \pm 1\\ y &= 0 \end{split} \end{equation*}
- (x^2 + y^2)x - ay^2 = 0
The equation is of degree 3. Here y^3 is absent, so asymptotes parallel to y-axis is obtained by equating the coefficients of highest degree of y to zero.
\begin{equation*} \begin{split} x - a &= 0\\ x &= a \end{split} \end{equation*}
We expect two more asymptotes. Let y = mx +c be the equation of asymptote.
Put x= 1, y=m,
\begin{equation*} \begin{split} \phi_3(m) &= 1 + m^2 \\ {\phi'}_3(m) &= 2m\\ \phi_2(m) &= -am^2 \end{split} \end{equation*}
Putting,
\begin{equation*} \begin{split} \phi_3(m) &= 0\\ 1 + m^2 &= 0\\ \end{split} \end{equation*}
m does not have real roots. So the equation does not have other asymptotes.
- x^3 -y^3 = 3ax^2
The degree of equation is 3.
The equation does not have asymptotes parallel to x-axis and y-axis because the coefficients of x^3 and y^3 are constants.
Let y = mx +c be the oblique asymptotes to the curve. Putting x= 1, y= m,
\begin{equation*} \begin{split} \phi_3(m) &= 1 -m^3 \\ {\phi'}_3(m) &= -3m^2 \\ \phi_2(m) &= -3a \end{split} \end{equation*}
To find value of m,
\begin{equation*} \begin{split} \phi_3(m) &= 0 \\ 1 -m^3 &= 0\\ m &= 1 \end{split} \end{equation*}
Now,
\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ &= -\dfrac{-3a}{-3m^2}\\ c &= -a \end{split} \end{equation*}
So the equation of asymptote is y = x-a.
- xy^2 - a^2(x-a) = 0
Degree of equation is 3. Here, x^3 is absent, so asymptotes parallel to x-axis are given by,
\begin{equation*} \begin{split} y^2 - a^2 &= 0\\ y &= \pm a \end{split} \end{equation*}
Here y^3 is also absent, so asymptote parallel to y-axis is,
\begin{equation*} \begin{split} x &= 0 \end{split} \end{equation*}
The asymptotes are thus,
\begin{equation*} \begin{split} x &= 0\\ y &= \pm a \end{split} \end{equation*}
- (y-a)^2(x^2 - a^2) = x^4 + a^4
The equation can be written as (y-a)^2 = x^2 -a^2 + \dfrac{2x^2 a^2}{x^2 -a^2}.
Here, y \rightarrow \infty, when x \rightarrow \pm a.
Also, y \rightarrow \infty, when x \rightarrow \infty. So, no asymptotes parallel to x-axis.
Degree of equation is 4. We expect 4 asymptotes. Let y = mx +c be the equation of the remaining asymptotes.
Putting x=1, y=m,
\begin{equation*} \begin{split} \phi_4(m) &= m^2 -1\\ {\phi'}_4(m) &= 2m \\ \phi_3(m) &= -2am \end{split} \end{equation*}
For finding value of m,
\begin{equation*} \begin{split} \phi_4(m) &= 0\\ m^2 -1 &= 0\\ m &= \pm 1 \end{split} \end{equation*}
For finding value of c,
\begin{equation*} \begin{split} c &= - \dfrac{\phi_3(m)}{{\phi'}_4(m)} \\ &= \dfrac{2am}{2m} = a \end{split} \end{equation*}
Thus rest of the asymptotes are y \pm x = a. Thus the given equation has 4 asymptotes.
- y(y-1)^2 - x^2y = 0
Degree of equation is 3.
Let y = mx +c be the equation of the asymptotes.
Putting x=1, y=m,
\begin{equation*} \begin{split} \phi_3(m) &= m^3 -m \\ {\phi'}_3(m) &= 3m^2 -1\\ \phi_2(m) &= -2m^2 \end{split} \end{equation*}
Finding value of m,
\begin{equation*} \begin{split} \phi_3(m) &= 0\\ m^3 -m &= 0\\ m(m^2 -1) &= 0\\ m &= 0, \pm 1 \end{split} \end{equation*}
For finding c,
\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ c &= \dfrac{2m^2}{3m^2 -1} \end{split} \end{equation*}
Now,
m | c |
---|---|
0 | 0 |
1 | 1 |
-1 | 1 |
The equation of the asymptotes are,
\begin{equation*} \begin{split} y &= 0 \\ y \pm x &= 1 \end{split} \end{equation*}
- x^3 + y^3 = 3axy
The degree of equation is 3.
The coefficient of x^3 is 1 which is constant, so there are no asymptotes parallel to x-axis. Also, the coefficient of y^3 is 1 which is constant, so no asymptotes parallel to y-axis.
Let y=mx + c be the equation of the asymptotes. Then,
\begin{equation*} \begin{split} \phi_3(m) &= 1 + m^3 \\ {\phi'}_3(m) = 3m^2 \\ \phi_2(m) &= -3am \end{split} \end{equation*}
To find the value of m,
\begin{equation*} \begin{split} \phi_3(m) &= 0\\ 1 + m^3 &= 0\\ (1+m)(m^2 - m+1) &= 0\\ m &= -1 \text{ and two imaginary roots}\\ \end{split} \end{equation*}
Asymptote does not exist for imaginary values, so we consider only m=-1.
For c,
\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ &= \dfrac{3am}{3m^2}\\ &= \dfrac{a}{m} = -a \end{split} \end{equation*}
The asymptote is thus,
\begin{equation*} \begin{split} y + x + a &= 0 \end{split} \end{equation*}
13.1.2 Question 2
Determine the relative positions of the curves and the asymptotes in question number 1 [ii, iv, v] above.
1 ii.
For y=\dfrac{x^2}{x^2 + 1}, the only asymptote is y=1.
\begin{equation*} \begin{split} \lim (y-1) &= \lim \left(\dfrac{x^2}{x^2 + 1} - 1\right)\\ &= \lim \left(-\dfrac{1}{x^2 + 1}\right) \\ \end{split} \end{equation*}
When x \rightarrow +\infty, y-1 \rightarrow 0 through values less than 0 i.e negative values and when x \rightarrow -\infty, y-1 \rightarrow 0 through values less than 0 i.e negative values.
The curve thus approaches the asymptote y=1 from below both when x \rightarrow +\infty and x \rightarrow -\infty.
See the figure below.

Figure 13.1: Curve and asymptote of \dfrac{x^2}{x^2 + 1}
1 iv.
For y = \dfrac{x^2 + 2x -1}{x}, the asymptotes are x=0 and y=x+2.
When x \rightarrow +0, y \rightarrow -\infty and when x \rightarrow -0, y \rightarrow +\infty.
When the curve approaches x=0 from positive side, the curve deflects toward -\infty and when approaches x=0 from negative side, the curve deflects toward +\infty.
Also,
\begin{equation*} \begin{split} \lim (y-x-2) &= \lim \left(\dfrac{x^2 + 2x -1}{x} - x- 2\right)\\ &= \lim \left(-\dfrac{1}{x}\right) \end{split} \end{equation*}
When x \rightarrow +\infty, y-x-2 \rightarrow -0 and x \rightarrow -\infty, y-x-2 \rightarrow +0.
Therefore, the curve approaches y-x-2=0, from below when x \rightarrow +\infty and from above when x \rightarrow -\infty. See 13.2.

Figure 13.2: Curve and asymptotes of \dfrac{x^2 + 2x -1}{x}
1 v.
The asymptotes of y = \dfrac{2x -3}{x^2 - 3x + 2} are,
\begin{equation*} \begin{split} x &= 1\\ x &= 2\\ y &= 0 \end{split} \end{equation*}
When x=0, y =-\dfrac{3}{2}, so \left(0, -\dfrac{3}{2}\right) is the only crossing point here.
The equation can be written as \dfrac{2x -3}{(x-1)(x-2)}. So when,
\begin{equation*} \begin{split} x \rightarrow +\infty & \quad y \rightarrow +0 \\ x \rightarrow -\infty & \quad y \rightarrow -0 \\ x \rightarrow +1 & \quad y \rightarrow +\infty \\ x \rightarrow -1 & \quad y \rightarrow -\infty \\ x \rightarrow +2 & \quad y \rightarrow +\infty \\ x \rightarrow -2 & \quad y \rightarrow -\infty \\ \end{split} \end{equation*}
The relative position of the curve and the asymptotes is shown in 13.3.

Figure 13.3: Curve and asymptotes of \dfrac{2x -3}{x^2 - 3x + 2}
13.1.3 Question 3
Find the asymptotes of the following curves
- \dfrac{x^2}{a^2}- \dfrac{y^2}{b^2} = 1
The equation is of form F_2 - F_0 = 0.
\begin{equation*} \begin{split} \underbrace{\dfrac{x^2}{a^2}- \dfrac{y^2}{b^2}}_{F_2} - \underbrace{1}_{F_0} &= 0 \end{split} \end{equation*}
So by the method of inspection,
\begin{equation*} \begin{split} F_2 &= 0\\ \dfrac{x^2}{a^2}- \dfrac{y^2}{b^2} &= 0\\ \left(\frac{x}{a} + \frac{y}{b}\right)\left(\frac{x}{a} - \frac{y}{b}\right) &= 0\\ \left(\frac{x}{a} + \frac{y}{b}\right) = 0, \left(\frac{x}{a} - \frac{y}{b}\right) &= 0 \end{split} \end{equation*}
Two linear factors are found which are different. The asymptotes are thus,
\begin{equation*} \begin{split} y \pm \frac{b}{a}x &= 0 \end{split} \end{equation*}
- \dfrac{a^2}{x^2} + \dfrac{b^2}{y^2} = 1
The equation can be written as a^2y^2 + b^2 x^2 = x^2y^2.
The degree of equation is 4. There is no x^4. So asymptotes parallel to x-axis are obtained by equating the coefficients of highest degree term of x,
\begin{equation*} \begin{split} b^2 - y^2 &= 0\\ y &= \pm b \end{split} \end{equation*}
Similarly there is no y^4, so
\begin{equation*} \begin{split} a^2 - x^2 &= 0\\ x &= \pm a \end{split} \end{equation*}
Asymptotes are thus,
\begin{equation*} \begin{split} y &= \pm b \\ x &= \pm a \end{split} \end{equation*}
- y^2 = \dfrac{(a-x)^2}{a^2 + x^2}x^2
The equation can also be written as x^2y^2 + a^2y^2 = (a-x)^2 x^2.
For no values of x, y \rightarrow \infty, so no horizontal asymptotes in this case. Degree of equation is 4, There is no y^4. Asymptotes parallel to y-axis are,
\begin{equation*} \begin{split} x^2 + a^2 &= 0 \end{split} \end{equation*}
x does not have real roots. So there are no asymptotes parallel to y-axis.
Let y= mx +c be the equation of asymptotes. Putting x=1 and y=m,
\begin{equation*} \begin{split} \phi_4(m) &= -1 + m^2 \\ {\phi'}_4(m) &= 2m\\ \phi_3(m) &= 2a \end{split} \end{equation*}
To find slope of the asymptotes,
\begin{equation*} \begin{split} \phi_4(m) &= 0\\ -1 + m^2 &= 0\\ m &= \pm 1 \end{split} \end{equation*}
For c,
\begin{equation*} \begin{split} c &= -\dfrac{\phi_3(m)}{{\phi'}_4(m)}\\ &= -\dfrac{2a}{2m}\\ &= - \dfrac{a}{m} \end{split} \end{equation*}
For m=1, \quad c=-a and for m=-1, \quad c =a. The equation of asymptotes are thus,
\begin{equation*} \begin{split} y &= x-a\\ y + x &= a \end{split} \end{equation*}
- (a+x)^2(b^2 + x^2) = x^2y^2
Degree of equation is 4. No y^4, so
\begin{equation*} \begin{split} x^2 &= 0\\ x &= 0 \end{split} \end{equation*}
Let y = mx +c be the equation of asymptotes, putting x=1, y=m,
\begin{equation*} \begin{split} \phi_4(m) &= 1 - m^2\\ {\phi'}_4(m) &= -2m \\ \phi_3(m) &= 2a \end{split} \end{equation*}
The slope m of asymptotes are given by
\begin{equation*} \begin{split} \phi_4(m) &= 0\\ 1 - m^2 &= 0\\ m &= \pm 1 \end{split} \end{equation*}
For finding values of c,
\begin{equation*} \begin{split} c &= - \dfrac{\phi_3(m)}{{\phi'}_4(m)}\\ &= - \dfrac{2a}{-2m}\\ c &= \dfrac{a}{m} \end{split} \end{equation*}
For m =1, \quad c=a and for m = -1, \quad c =-a. Thus the asymptotes of the equation are
\begin{equation*} \begin{split} y &= x + a\\ y +x + a &= 0 \end{split} \end{equation*}
- x^2y + xy^2 = a^3
The equation can be written as,
\begin{equation*} \begin{split} xy(x+y) - a^3 &= 0\\ \underbrace{xy(x+y)}_{F_3} - \underbrace{a^3}_{F_0} &= 0 \end{split} \end{equation*}
The F_3 has three non-repeating linear factors. The asymptotes thus can be obtained by method of inspection, equating F_3=0.
\begin{equation*} \begin{split} x &= 0\\ y &= 0\\ (x+y) &= 0 \end{split} \end{equation*}