Chapter 13 Asymptotes-I

  • Total number of asymptotes cannot exceed the highest degree of the equation.
  • It is not necessary that all the curves have asymptotes.
  • If a curve of \(n^\text{th}\) degree has \(n\) asymptotes, then they cut the curve in \(n(n-2)\) points.

Tips on finding vertical and horizontal asymptotes can be found here.

13.1 Exercise 7

13.1.1 Question 1

Find the asymptotes of the curves

  1. \(y= \dfrac{x}{(x-1)^2(x-2)}\)

Here, \(y \rightarrow \infty\), when \(x \rightarrow 1\).

Also, \(y \rightarrow \infty\), when \(x \rightarrow 2\), \(\quad y \rightarrow 0\) when \(x \rightarrow \infty\).

So, there are three asymptotes.

\[\begin{equation*} \begin{split} x &=1 \\ x &= 2\\ y &= 0 \end{split} \end{equation*}\]

  1. \(y=\dfrac{x^2}{x^2 + 1}\)

The equation is of degree \(3\). Here \(x^3\) is absent, so asymptotes parallel to \(x\)-axis is obtained by equating to zero the coefficients of highest degree term in \(x\).

\[\begin{equation*} \begin{split} y -1 &= 0\\ y &= 1 \end{split} \end{equation*}\]

Also \(y^3\) is absent, so asymptotes parallel to \(y\)-axis is obtained by equating to zero the coefficients of highest degree term in \(y\).

\[\begin{equation*} \begin{split} x^2 + 1 &= 0 \end{split} \end{equation*}\]

This doesn’t have real roots. So \(y=1\) is the only asymptote.

In other words, there is no value of \(x\) such that \(y \rightarrow \infty\). So, the equation doesn’t have vertical asymptote, horizontal asymptote only despite the degree of equation being \(3\).

  1. \(y = \dfrac{4x^2 + 4x -3}{x^2 -4x +3}\)

The equation can be written as \(y = \dfrac{(2x + 3)(2x-1)}{(x-1)(x-3)}\).

Here, \(y \rightarrow \infty\), when \(x \rightarrow 1\), \(\quad y \rightarrow \infty\), when \(x \rightarrow 3\) and \(y \rightarrow 4\), when \(x \rightarrow \infty\).

So asymptotes are,

\[\begin{equation*} \begin{split} x &= 1\\ x &= 3\\ y &= 4 \end{split} \end{equation*}\]

  1. \(y = \dfrac{x^2 + 2x -1}{x}\)

The function is a rational function and is improper. Trying to reduce fraction reveal difficult to manipulate roots of the numerator. So, no attempt is being made to reduce it further.

Here, \(y \rightarrow \infty\), when \(x \rightarrow 0\).

Also, \(y \rightarrow \infty\), when \(x \rightarrow \infty\). Hence, there is no asymptote parallel to \(x\)-axis.

To obtain oblique asymptote of form \(y = mx +c\), we know,

\[\begin{equation*} \begin{split} m &= \lim_{x \to \infty} \dfrac{y}{x}\\ &= \lim_{x \to \infty} \dfrac{ x + 2 -\frac{1}{x}}{x}\\ &= \lim_{x \to \infty} 1 + \frac{2}{x} -\frac{1}{x^2}\\ m &= 1 \end{split} \end{equation*}\]

Also,

\[\begin{equation*} \begin{split} c &= \lim_{x \to \infty} (y - mx)\\ &= \lim_{x \to \infty} (y - x)\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + 2x -1}{x} - x\right)\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + 2x -1 -x^2}{x}\right)\\ &= \lim_{x \to \infty} \left(2 -\dfrac{1}{x}\right)\\ c &= 2 \end{split} \end{equation*}\]

The oblique asymptote is thus \(y = x+2\).

All symptotes of the given equation are thus,

\[\begin{equation*} \begin{split} x &= 0\\ y &= x +2 \end{split} \end{equation*}\]

  1. \(y = \dfrac{2x -3}{x^2 - 3x + 2}\)

The equation has degree \(3\). So it can have maximum of three asymptotes. It can be written as \(y = \dfrac{2x-3}{(x-1)(x-2)}\).

Here, \(y \rightarrow \infty\), when \(x \rightarrow 1\) and \(x \rightarrow 2\). Also \(y \rightarrow 0\), when \(x \rightarrow \infty\). It cannot have more than \(3\) asymptotes because the degree is \(3\). No need to proceed further. Thus the asymptotes are,

\[\begin{equation*} \begin{split} x &= 0\\ x &= 1\\ x &= 2 \end{split} \end{equation*}\]

  1. \(y = \dfrac{(x+2)^2 (x-3)}{x-1}\)

Here, \(y \rightarrow \infty\), when \(x \rightarrow 1\).

Also, \(y \rightarrow \infty\), when \(x \rightarrow \infty\). So no asymptotes parallel to \(x\)-axis.

To find oblique asymptote,

\[\begin{equation*} \begin{split} m &= \lim_{x \to \infty} \dfrac{y}{x}\\ m &= \lim_{x \to \infty} \dfrac{\dfrac{x^3 + x^2 - 8x -12}{x-1}}{x}\\ &= \lim_{x \to \infty} \left(\dfrac{x^2 + x-8 - \frac{12}{x}}{x -1}\right)\\ &= \lim_{x \to \infty} \left(\dfrac{x + 1 - \frac{8}{x}- \frac{12}{x^2}}{1 - \frac{1}{x}}\right)\\ &= \infty \end{split} \end{equation*}\]

Thus, \(m\) is infinite. So, it does not have oblique asymptote. The only asymptote is \(x=1\).

  1. \(y= \dfrac{x^2 + 1}{1 + x}\)

The equation can be written as \(y = 1 + x - \dfrac{2x}{1 + x}\).

Here, \(y \rightarrow \infty\), when \(x \rightarrow -1\).

Also, \(y \rightarrow \infty\), when \(x \rightarrow \infty\), So, no asymptotes parallel to \(x\)-axis.

For oblique asymptote of form \(y = mx + c\),

\[\begin{equation*} \begin{split} m &= \lim_{x \to \infty} \dfrac{y}{x}\\ m &= \lim_{x \to \infty} \left(\frac{1}{x} + 1 - \frac{2}{1+x}\right)\\ m &= 1\\ c &= \lim_{x \to \infty} (y - mx)\\ &= \lim_{x \to \infty} (y - x)\\ &= \lim_{x \to \infty} \left(1 - \frac{2x}{1+x}\right)\\ &= -1 \end{split} \end{equation*}\]

Oblique asymptote is therefore \(y = x -1\).

So all asymptotes of the equation are,

\[\begin{equation*} \begin{split} x + 1 &= 0\\ y &= x-1 \end{split} \end{equation*}\]

  1. \(y = \dfrac{x}{x^2 -1}\)

It can be written as \(y = \dfrac{x}{(x+1)(x-1)}\).

Here, \(y \rightarrow \infty\), when \(x \rightarrow 1\) and \(x \rightarrow -1\). Also, \(y \rightarrow 0\), when \(x \rightarrow \infty\).

The asymptotes are thus,

\[\begin{equation*} \begin{split} x &= \pm 1\\ y &= 0 \end{split} \end{equation*}\]

  1. \((x^2 + y^2)x - ay^2 = 0\)

The equation is of degree \(3\). Here \(y^3\) is absent, so asymptotes parallel to \(y\)-axis is obtained by equating the coefficients of highest degree of \(y\) to zero.

\[\begin{equation*} \begin{split} x - a &= 0\\ x &= a \end{split} \end{equation*}\]

We expect two more asymptotes. Let \(y = mx +c\) be the equation of asymptote.

Put \(x= 1, y=m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= 1 + m^2 \\ {\phi'}_3(m) &= 2m\\ \phi_2(m) &= -am^2 \end{split} \end{equation*}\]

Putting,

\[\begin{equation*} \begin{split} \phi_3(m) &= 0\\ 1 + m^2 &= 0\\ \end{split} \end{equation*}\]

\(m\) does not have real roots. So the equation does not have other asymptotes.

  1. \(x^3 -y^3 = 3ax^2\)

The degree of equation is \(3\).

The equation does not have asymptotes parallel to \(x\)-axis and \(y\)-axis because the coefficients of \(x^3\) and \(y^3\) are constants.

Let \(y = mx +c\) be the oblique asymptotes to the curve. Putting \(x= 1, y= m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= 1 -m^3 \\ {\phi'}_3(m) &= -3m^2 \\ \phi_2(m) &= -3a \end{split} \end{equation*}\]

To find value of \(m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= 0 \\ 1 -m^3 &= 0\\ m &= 1 \end{split} \end{equation*}\]

Now,

\[\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ &= -\dfrac{-3a}{-3m^2}\\ c &= -a \end{split} \end{equation*}\]

So the equation of asymptote is \(y = x-a\).

  1. \(xy^2 - a^2(x-a) = 0\)

Degree of equation is \(3\). Here, \(x^3\) is absent, so asymptotes parallel to \(x\)-axis are given by,

\[\begin{equation*} \begin{split} y^2 - a^2 &= 0\\ y &= \pm a \end{split} \end{equation*}\]

Here \(y^3\) is also absent, so asymptote parallel to \(y\)-axis is,

\[\begin{equation*} \begin{split} x &= 0 \end{split} \end{equation*}\]

The asymptotes are thus,

\[\begin{equation*} \begin{split} x &= 0\\ y &= \pm a \end{split} \end{equation*}\]

  1. \((y-a)^2(x^2 - a^2) = x^4 + a^4\)

The equation can be written as \((y-a)^2 = x^2 -a^2 + \dfrac{2x^2 a^2}{x^2 -a^2}\).

Here, \(y \rightarrow \infty\), when \(x \rightarrow \pm a\).

Also, \(y \rightarrow \infty\), when \(x \rightarrow \infty\). So, no asymptotes parallel to \(x\)-axis.

Degree of equation is \(4\). We expect \(4\) asymptotes. Let \(y = mx +c\) be the equation of the remaining asymptotes.

Putting \(x=1, y=m\),

\[\begin{equation*} \begin{split} \phi_4(m) &= m^2 -1\\ {\phi'}_4(m) &= 2m \\ \phi_3(m) &= -2am \end{split} \end{equation*}\]

For finding value of \(m\),

\[\begin{equation*} \begin{split} \phi_4(m) &= 0\\ m^2 -1 &= 0\\ m &= \pm 1 \end{split} \end{equation*}\]

For finding value of \(c\),

\[\begin{equation*} \begin{split} c &= - \dfrac{\phi_3(m)}{{\phi'}_4(m)} \\ &= \dfrac{2am}{2m} = a \end{split} \end{equation*}\]

Thus rest of the asymptotes are \(y \pm x = a\). Thus the given equation has \(4\) asymptotes.

  1. \(y(y-1)^2 - x^2y = 0\)

Degree of equation is \(3\).

Let \(y = mx +c\) be the equation of the asymptotes.

Putting \(x=1, y=m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= m^3 -m \\ {\phi'}_3(m) &= 3m^2 -1\\ \phi_2(m) &= -2m^2 \end{split} \end{equation*}\]

Finding value of \(m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= 0\\ m^3 -m &= 0\\ m(m^2 -1) &= 0\\ m &= 0, \pm 1 \end{split} \end{equation*}\]

For finding \(c\),

\[\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ c &= \dfrac{2m^2}{3m^2 -1} \end{split} \end{equation*}\]

Now,

\(m\) \(c\)
\(0\) \(0\)
\(1\) \(1\)
\(-1\) \(1\)

The equation of the asymptotes are,

\[\begin{equation*} \begin{split} y &= 0 \\ y \pm x &= 1 \end{split} \end{equation*}\]

  1. \(x^3 + y^3 = 3axy\)

The degree of equation is \(3\).

The coefficient of \(x^3\) is \(1\) which is constant, so there are no asymptotes parallel to \(x\)-axis. Also, the coefficient of \(y^3\) is \(1\) which is constant, so no asymptotes parallel to \(y\)-axis.

Let \(y=mx + c\) be the equation of the asymptotes. Then,

\[\begin{equation*} \begin{split} \phi_3(m) &= 1 + m^3 \\ {\phi'}_3(m) = 3m^2 \\ \phi_2(m) &= -3am \end{split} \end{equation*}\]

To find the value of \(m\),

\[\begin{equation*} \begin{split} \phi_3(m) &= 0\\ 1 + m^3 &= 0\\ (1+m)(m^2 - m+1) &= 0\\ m &= -1 \text{ and two imaginary roots}\\ \end{split} \end{equation*}\]

Asymptote does not exist for imaginary values, so we consider only \(m=-1\).

For \(c\),

\[\begin{equation*} \begin{split} c &= - \dfrac{\phi_2(m)}{{\phi'}_3(m)}\\ &= \dfrac{3am}{3m^2}\\ &= \dfrac{a}{m} = -a \end{split} \end{equation*}\]

The asymptote is thus,

\[\begin{equation*} \begin{split} y + x + a &= 0 \end{split} \end{equation*}\]

13.1.2 Question 2

Determine the relative positions of the curves and the asymptotes in question number 1 [ii, iv, v] above.

1 ii.

For \(y=\dfrac{x^2}{x^2 + 1}\), the only asymptote is \(y=1\).

\[\begin{equation*} \begin{split} \lim (y-1) &= \lim \left(\dfrac{x^2}{x^2 + 1} - 1\right)\\ &= \lim \left(-\dfrac{1}{x^2 + 1}\right) \\ \end{split} \end{equation*}\]

When \(x \rightarrow +\infty\), \(y-1 \rightarrow 0\) through values less than \(0\) i.e negative values and when \(x \rightarrow -\infty\), \(y-1 \rightarrow 0\) through values less than \(0\) i.e negative values.

The curve thus approaches the asymptote \(y=1\) from below both when \(x \rightarrow +\infty\) and \(x \rightarrow -\infty\).

See the figure below.

Curve and asymptote of $\dfrac{x^2}{x^2 + 1}$

Figure 13.1: Curve and asymptote of \(\dfrac{x^2}{x^2 + 1}\)

1 iv.

For \(y = \dfrac{x^2 + 2x -1}{x}\), the asymptotes are \(x=0\) and \(y=x+2\).

When \(x \rightarrow +0\), \(y \rightarrow -\infty\) and when \(x \rightarrow -0\), \(y \rightarrow +\infty\).

When the curve approaches \(x=0\) from positive side, the curve deflects toward \(-\infty\) and when approaches \(x=0\) from negative side, the curve deflects toward \(+\infty\).

Also,

\[\begin{equation*} \begin{split} \lim (y-x-2) &= \lim \left(\dfrac{x^2 + 2x -1}{x} - x- 2\right)\\ &= \lim \left(-\dfrac{1}{x}\right) \end{split} \end{equation*}\]

When \(x \rightarrow +\infty\), \(y-x-2 \rightarrow -0\) and \(x \rightarrow -\infty\), \(y-x-2 \rightarrow +0\).

Therefore, the curve approaches \(y-x-2=0\), from below when \(x \rightarrow +\infty\) and from above when \(x \rightarrow -\infty\). See 13.2.

Curve and asymptotes of $\dfrac{x^2 + 2x -1}{x}$

Figure 13.2: Curve and asymptotes of \(\dfrac{x^2 + 2x -1}{x}\)

1 v.

The asymptotes of \(y = \dfrac{2x -3}{x^2 - 3x + 2}\) are,

\[\begin{equation*} \begin{split} x &= 1\\ x &= 2\\ y &= 0 \end{split} \end{equation*}\]

When \(x=0\), \(y =-\dfrac{3}{2}\), so \(\left(0, -\dfrac{3}{2}\right)\) is the only crossing point here.

The equation can be written as \(\dfrac{2x -3}{(x-1)(x-2)}\). So when,

\[\begin{equation*} \begin{split} x \rightarrow +\infty & \quad y \rightarrow +0 \\ x \rightarrow -\infty & \quad y \rightarrow -0 \\ x \rightarrow +1 & \quad y \rightarrow +\infty \\ x \rightarrow -1 & \quad y \rightarrow -\infty \\ x \rightarrow +2 & \quad y \rightarrow +\infty \\ x \rightarrow -2 & \quad y \rightarrow -\infty \\ \end{split} \end{equation*}\]

The relative position of the curve and the asymptotes is shown in 13.3.

Curve and asymptotes of $\dfrac{2x -3}{x^2 - 3x + 2}$

Figure 13.3: Curve and asymptotes of \(\dfrac{2x -3}{x^2 - 3x + 2}\)

13.1.3 Question 3

Find the asymptotes of the following curves

  1. \(\dfrac{x^2}{a^2}- \dfrac{y^2}{b^2} = 1\)

The equation is of form \(F_2 - F_0 = 0\).

\[\begin{equation*} \begin{split} \underbrace{\dfrac{x^2}{a^2}- \dfrac{y^2}{b^2}}_{F_2} - \underbrace{1}_{F_0} &= 0 \end{split} \end{equation*}\]

So by the method of inspection,

\[\begin{equation*} \begin{split} F_2 &= 0\\ \dfrac{x^2}{a^2}- \dfrac{y^2}{b^2} &= 0\\ \left(\frac{x}{a} + \frac{y}{b}\right)\left(\frac{x}{a} - \frac{y}{b}\right) &= 0\\ \left(\frac{x}{a} + \frac{y}{b}\right) = 0, \left(\frac{x}{a} - \frac{y}{b}\right) &= 0 \end{split} \end{equation*}\]

Two linear factors are found which are different. The asymptotes are thus,

\[\begin{equation*} \begin{split} y \pm \frac{b}{a}x &= 0 \end{split} \end{equation*}\]


  1. \(\dfrac{a^2}{x^2} + \dfrac{b^2}{y^2} = 1\)

The equation can be written as \(a^2y^2 + b^2 x^2 = x^2y^2\).

The degree of equation is \(4\). There is no \(x^4\). So asymptotes parallel to \(x\)-axis are obtained by equating the coefficients of highest degree term of \(x\),

\[\begin{equation*} \begin{split} b^2 - y^2 &= 0\\ y &= \pm b \end{split} \end{equation*}\]

Similarly there is no \(y^4\), so

\[\begin{equation*} \begin{split} a^2 - x^2 &= 0\\ x &= \pm a \end{split} \end{equation*}\]

Asymptotes are thus,

\[\begin{equation*} \begin{split} y &= \pm b \\ x &= \pm a \end{split} \end{equation*}\]


  1. \(y^2 = \dfrac{(a-x)^2}{a^2 + x^2}x^2\)

The equation can also be written as \(x^2y^2 + a^2y^2 = (a-x)^2 x^2\).

For no values of \(x\), \(y \rightarrow \infty\), so no horizontal asymptotes in this case. Degree of equation is \(4\), There is no \(y^4\). Asymptotes parallel to \(y\)-axis are,

\[\begin{equation*} \begin{split} x^2 + a^2 &= 0 \end{split} \end{equation*}\]

\(x\) does not have real roots. So there are no asymptotes parallel to \(y\)-axis.

Let \(y= mx +c\) be the equation of asymptotes. Putting \(x=1\) and \(y=m\),

\[\begin{equation*} \begin{split} \phi_4(m) &= -1 + m^2 \\ {\phi'}_4(m) &= 2m\\ \phi_3(m) &= 2a \end{split} \end{equation*}\]

To find slope of the asymptotes,

\[\begin{equation*} \begin{split} \phi_4(m) &= 0\\ -1 + m^2 &= 0\\ m &= \pm 1 \end{split} \end{equation*}\]

For \(c\),

\[\begin{equation*} \begin{split} c &= -\dfrac{\phi_3(m)}{{\phi'}_4(m)}\\ &= -\dfrac{2a}{2m}\\ &= - \dfrac{a}{m} \end{split} \end{equation*}\]

For \(m=1, \quad c=-a\) and for \(m=-1, \quad c =a\). The equation of asymptotes are thus,

\[\begin{equation*} \begin{split} y &= x-a\\ y + x &= a \end{split} \end{equation*}\]


  1. \((a+x)^2(b^2 + x^2) = x^2y^2\)

Degree of equation is \(4\). No \(y^4\), so

\[\begin{equation*} \begin{split} x^2 &= 0\\ x &= 0 \end{split} \end{equation*}\]

Let \(y = mx +c\) be the equation of asymptotes, putting \(x=1, y=m\),

\[\begin{equation*} \begin{split} \phi_4(m) &= 1 - m^2\\ {\phi'}_4(m) &= -2m \\ \phi_3(m) &= 2a \end{split} \end{equation*}\]

The slope \(m\) of asymptotes are given by

\[\begin{equation*} \begin{split} \phi_4(m) &= 0\\ 1 - m^2 &= 0\\ m &= \pm 1 \end{split} \end{equation*}\]

For finding values of \(c\),

\[\begin{equation*} \begin{split} c &= - \dfrac{\phi_3(m)}{{\phi'}_4(m)}\\ &= - \dfrac{2a}{-2m}\\ c &= \dfrac{a}{m} \end{split} \end{equation*}\]

For \(m =1, \quad c=a\) and for \(m = -1, \quad c =-a\). Thus the asymptotes of the equation are

\[\begin{equation*} \begin{split} y &= x + a\\ y +x + a &= 0 \end{split} \end{equation*}\]


  1. \(x^2y + xy^2 = a^3\)

The equation can be written as,

\[\begin{equation*} \begin{split} xy(x+y) - a^3 &= 0\\ \underbrace{xy(x+y)}_{F_3} - \underbrace{a^3}_{F_0} &= 0 \end{split} \end{equation*}\]

The \(F_3\) has three non-repeating linear factors. The asymptotes thus can be obtained by method of inspection, equating \(F_3=0\).

\[\begin{equation*} \begin{split} x &= 0\\ y &= 0\\ (x+y) &= 0 \end{split} \end{equation*}\]