Chapter 10 Indeterminate Forms-II

10.1 Exercise 5

10.1.1 Question 5

Evaluate the following limits

  1. limx1x1/(1x) [TU 2056]

This is of form 1.

y=x1/(1x)logy=11xlogxlimx1logy=limx1logx1x(00)=limx11x1=1limx1logy=1limx1y=e1limx1x1/(1x)=e1

  1. limxx1/x

The limit is of form 0.

y=x1/xlogy=1xlogxlimxlogy=limxlogxx()=limx1x1=limx1x=0limxlogy=0limxy=e0limxx1/x=1

  1. limx0(1+x)1/xex

The given expression can be written as,

(1+x)1/xex=e1xlog(1+x)ex

So,

=limx0e1xlog(1+x)ex=limx0e1x(xx22+x33x44+x55)ex=limx0e(1x2+x23x34+)ex(00)=limx0e(1x2+x23x34+)×(012+2x3)01=e×(12)=e2

Derivative of e(1x2+x23x34+) is e(1x2+x23x34+)×(012+2x3).

  1. limx0xex(1+x)log(1+x)x2

=limx0xex(1+x)log(1+x)x2(00)=xex+ex(1+x1+x+log(1+x))2x=xex+ex1log(1+x)2x(00)=limx0xex+ex+ex011+x2=0+1+112=12

  1. limx0(cosx)1/x2

The limit is of form 1.

y=(cosx)1/x2logy=1x2log(cosx)limx0logy=limx0log(cosx)x2(00)=limx0tanx2x(00)=limx0sec2x2limx0logy=12limx0y=e1/2limx0(cosx)1/x2=e1/2

  1. limxa(2xa)tanπx2a

The limit is of form 1.

y=(2xa)tanπx2alimxalogy=limxatanπx2alog(2xa)×0=limxalog(2xa)cotπx2a(00)=limxa12xa×(1a)csc2πx2a×π2a=1aπ2alimxalogy=2πlimxay=e2πlimxa(2xa)tanπx2a=e2π


10.1.2 Question 6

  1. If limx0asinxsin2xtan3x is finite, find the value of a and the limit.

The given expression takes the form 00 as x0 for any value of a.

=limx0asinxsin2xtan3x=limx0asinxsin2xx3(tanxx)3=limx0asinxsin2xx3(00)=limx0acosx2cos2x3x2

This takes the form a20 as x0. In order that the limit be finite, the form should be 00. So,

a2=0a=2

Then the limit,

=limx02cosx2cos2x3x2(00)=limx02sinx+4sin2x6x(00)=limx02cosx+8cos2x6=2+86=1

  1. Determine the values of a and b, so that:

limx0x(1+acosx)bsinxx3=1

The given expression takes the form 00 as x0 for any value of a and b.

=limx0x(1+acosx)bsinxx3(00)(10.1)=limx0(1+acosx)axsinxbcosx3x2

This takes the form 1+a0b0 as x0. In order that the limit be finite i.e. 1, the form should be 00. So,

(10.2)ab+1=0

Continuing with (10.1),

=limx0asinxa(xcosx+sinx)+bsinx6x=limx02asinxaxcosx+bsinx6x(00)=limx02acosxa(cosxxsinx)+bcosx6=2aa+b6

The limit is given as 1. So,

2aa+b6=1(10.3)3a+b=6

Solving (10.2) and (10.3), we get,

a=52b=32

  1. Determine the values of a, b, c, so that:

limx0(a+bcosx)xcsinxx5=1

The LHS of given expression takes the form 00 as x0 for any value of a, b and c.

=limx0(a+bcosx)xcsinxx5(00)(10.4)=limx0bxsinx+a+bcosxccosx5x4

This takes the form a+bc0 as x0. In order that the limit be finite i.e. 1, the form should be 00. So,

(10.5)a+bc=0

Continuing from (10.4),

=limx0b(xcosx+sinx)+0bsinx+csinx20x3(00)(10.6)=limx0b(cosxxsinx+cosx)bcosx+ccosx60x2

This takes the form 2bb+c0 as x0. In order that the limit be finite i.e. 1, the form should be 00. So,

(10.7)3bc=0

Continuing with (10.6),

=limx0b(2sinxxcosxsinx)+bsinxcsinx120x(00)=limx02bcosx+b(cosxxsinx+cosx)+bcosxccosx120

This takes the form 2b+b(10+1)+bc120 as x0. Also given the limit of expression is 1. Equating two, we have,

2b+b(10+1)+bc120=1(10.8)5bc=120

Solving (10.5), (10.7) and (10.8), we get,

a=120b=60c=180