Question 5
Evaluate the following limits
- limx→1x1/(1−x) [TU 2056]
This is of form 1∞.
y=x1/(1−x)logy=11−xlogxlimx→1logy=limx→1logx1−x⟹(00)=limx→11x−1=−1limx→1logy=−1limx→1y=e−1limx→1x1/(1−x)=e−1
- limx→∞x1/x
The limit is of form ∞0.
y=x1/xlogy=1xlogxlimx→∞logy=limx→∞logxx⟹(∞∞)=limx→∞1x1=limx→∞1x=0limx→∞logy=0limx→∞y=e0limx→∞x1/x=1
- limx→0(1+x)1/x−ex
The given expression can be written as,
(1+x)1/x−ex=e1xlog(1+x)−ex
So,
=limx→0e1xlog(1+x)−ex=limx→0e1x(x−x22+x33−x44+x55−…)−ex=limx→0e(1−x2+x23−x34+…)−ex⟹(00)=limx→0e(1−x2+x23−x34+…)×(0−12+2x3−…)−01=e×(−12)=−e2
Derivative of e(1−x2+x23−x34+…) is e(1−x2+x23−x34+…)×(0−12+2x3−…).
- limx→0xex−(1+x)log(1+x)x2
=limx→0xex−(1+x)log(1+x)x2⟹(00)=xex+ex−(1+x1+x+log(1+x))2x=xex+ex−1−log(1+x)2x⟹(00)=limx→0xex+ex+ex−0−11+x2=0+1+1−12=12
- limx→0(cosx)1/x2
The limit is of form 1∞.
y=(cosx)1/x2logy=1x2log(cosx)limx→0logy=limx→0log(cosx)x2⟹(00)=limx→0−tanx2x⟹(00)=limx→0−sec2x2limx→0logy=−12limx→0y=e−1/2limx→0(cosx)1/x2=e−1/2
- limx→a(2−xa)tanπx2a
The limit is of form 1∞.
y=(2−xa)tanπx2alimx→alogy=limx→atanπx2alog(2−xa)⟹∞×0=limx→alog(2−xa)cotπx2a⟹(00)=limx→a12−xa×(−1a)−csc2πx2a×π2a=−1a−π2alimx→alogy=2πlimx→ay=e2πlimx→a(2−xa)tanπx2a=e2π
Question 6
- If limx→0asinx−sin2xtan3x is finite, find the value of a and the limit.
The given expression takes the form 00 as x→0 for any value of a.
=limx→0asinx−sin2xtan3x=limx→0asinx−sin2xx3(tanxx)3=limx→0asinx−sin2xx3⟹(00)=limx→0acosx−2cos2x3x2
This takes the form a−20 as x→0. In order that the limit be finite, the form should be 00. So,
a−2=0a=2
Then the limit,
=limx→02cosx−2cos2x3x2⟹(00)=limx→0−2sinx+4sin2x6x⟹(00)=limx→0−2cosx+8cos2x6=−2+86=1
- Determine the values of a and b, so that:
limx→0x(1+acosx)−bsinxx3=1
The given expression takes the form 00 as x→0 for any value of a and b.
=limx→0x(1+acosx)−bsinxx3⟹(00)=limx→0(1+acosx)−axsinx−bcosx3x2(10.1)
This takes the form 1+a−0−b0 as x→0. In order that the limit be finite i.e. 1, the form should be 00. So,
a−b+1=0(10.2)
Continuing with (10.1),
=limx→0−asinx−a(xcosx+sinx)+bsinx6x=limx→0−2asinx−axcosx+bsinx6x⟹(00)=limx→0−2acosx−a(cosx−xsinx)+bcosx6=−2a−a+b6
The limit is given as 1. So,
−2a−a+b6=1−3a+b=6(10.3)
Solving (10.2) and (10.3), we get,
a=−52b=−32
- Determine the values of a, b, c, so that:
limx→0(a+bcosx)x−csinxx5=1
The LHS of given expression takes the form 00 as x→0 for any value of a, b and c.
=limx→0(a+bcosx)x−csinxx5⟹(00)=limx→0−bxsinx+a+bcosx−ccosx5x4(10.4)
This takes the form a+b−c0 as x→0. In order that the limit be finite i.e. 1, the form should be 00. So,
a+b−c=0(10.5)
Continuing from (10.4),
=limx→0−b(xcosx+sinx)+0−bsinx+csinx20x3⟹(00)=limx→0−b(cosx−xsinx+cosx)−bcosx+ccosx60x2(10.6)
This takes the form −2b−b+c0 as x→0. In order that the limit be finite i.e. 1, the form should be 00. So,
3b−c=0(10.7)
Continuing with (10.6),
=limx→0−b(−2sinx−xcosx−sinx)+bsinx−csinx120x⟹(00)=limx→02bcosx+b(cosx−xsinx+cosx)+bcosx−ccosx120
This takes the form 2b+b(1−0+1)+b−c120 as x→0.
Also given the limit of expression is 1. Equating two, we have,
2b+b(1−0+1)+b−c120=15b−c=120(10.8)
Solving (10.5), (10.7) and (10.8), we get,
a=120b=60c=180