Chapter 19 Partial Differentiation-II
Review this video on homogeneous functions and Euler’s theorem before working on the questions.
19.1 Exercise 10(ii)
19.1.1 Question 1
Verify Euler’s theorem for the following functions:
- u=ax2+2hxy+by2
The given equation is a homogeneous function of degree n=2, so we expect x∂u∂x+y∂u∂y=nu=2u according to Euler’s theorem.
x∂u∂x+y∂u∂y=x(2ax+2hy)+y(2hx+2by)=2ax2+2hxy+2hxy+2by2=2(ax2+2hxy+by2)=2u
Thus, Euler’s theorem is verified.
- u=x3+y3+z3−3xyz
This is a homogeneous function of degree n=3 with three independent variables f(x,y,z). So from Euler’s theorem, we expect
x∂u∂x+y∂u∂y+z∂u∂z=nu=3u
∂u∂x=3x2−3yz∂u∂y=3y2−3xz∂u∂z=3z2−3xy
So,
x∂u∂x+y∂u∂y+z∂u∂z=x(3x2−3yz)+y(3y2−3xz)+z(3z2−3xy)=3x3−3xyz+3y3−3xyz+3z3−3xyz=3(x3+y3+z3−3xyz)=3u
Thus, Euler’s theorem verified.
- u=(x2+y2)1/3
This is a homogeneous function of degree n=2/3. So we expect x∂u∂x+y∂u∂y=23u.
x∂u∂x+y∂u∂y=x13(x2+y2)−2/3×2x+y13(x2+y2)−2/3×2y=23x2(x2+y2)−2/3+23y2(x2+y2)−2/3=23(x2+y2)−2/3(x2+y2)=23(x2+y2)1/3=23u
- u=xntan−1(yx) (TU 2061, 2065)
Here, f(x,y)=u=xntan−1(yx). Then f(λx,λy)=(λx)ntan−1(λyλx)=(λ)nxntan−1(yx)=(λ)nf(x,y).
Thus the given function is a homogeneous function of degree n. So from Euler’s theorem, we expect x∂u∂x+y∂u∂y=nu=nxntan−1(yx).
x∂u∂x+y∂u∂y=x(xn11+(y/x)2×(−y/x2)+tan−1(yx)nxn−1)+y(xn11+(y/x)2×1x)=−y1+(y/x)2×xn−1+tan−1(yx)nxn+y1+(y/x)2×xn−1=nxntan−1(yx)=nu
Hence, Euler’s theorem is verified.
- u=xf(yx)
This is a homogeneous function of degree 1. So we expect
x∂u∂x+y∂u∂y=1u=u=xf(yx)
∂u∂x=xf′(yx)×(−yx2)+f(yx)∂u∂y=x(f′(yx)×1x)
x∂u∂x+y∂u∂y=x(xf′(yx)×(−yx2)+f(yx))+yx(f′(yx)×1x)=−yf′(yx)+xf(yx)+yf′(yx)=xf(yx)=1×u=u
- u=x1/4+y1/4x1/5+y1/5
The function can be written as
u=x1/4+y1/4x1/5+y1/5=x1/4(1+(y/x)1/4)x1/5(1+(y/x)1/5)=x1/20(1+(y/x)1/4)(1+(y/x)1/5)u=x1/20ϕ(yx)
Thus this is a homogeneous function of degree n=1/20. So we expect
x∂u∂x+y∂u∂y=120u
∂u∂x=x1/20ϕ′(y/x)(−y/x2)+ϕ(y/x)×(120)x120−1∂u∂y=x1/20ϕ′(y/x)×1x
x∂u∂x+y∂u∂y=x(x1/20ϕ′(y/x)(−y/x2)+ϕ(y/x)×(120)x120−1)+y(x1/20ϕ′(y/x)×1x)=120x1/20ϕ(y/x)=120u
Hence, Euler’s theorem is verified.
- u=xnsin(yx)
Here, f(x,y)=u=xnsin(yx).
f(λx,λy)=(λx)nsin(λyλx)=(λ)nxnsin(yx)=(λ)nf(x,y). Thus the given function is a homogeneous one with degree n.
So we need to prove
x∂u∂x+y∂u∂y=nu=nxnsin(yx)
∂u∂x=xncos(y/x)×(−y/x2)+sin(y/x)nxn−1∂u∂y=xncos(y/x)×(1/x)
x∂u∂x+y∂u∂y=x(xncos(y/x)×(−y/x2)+sin(y/x)nxn−1)+y(xncos(y/x)×(1/x))=−xn−1ycos(y/x)+nxnsin(y/x)+xn−1ycos(y/x)=nxnsin(yx)=nu
Thus, Euler’s theorem is verified.
19.1.2 Question 2
- If u=tan−1x3+y3x−y, x≠y, prove that x∂u∂x+y∂u∂y=sin2u. (TU 2054)
u is not a homogeneous function of x and y.
Let z=tanu=x3+y3x−y=x3(1+(y/x)3)x(1−(y/x))=x2(1+(y/x)3)1−(y/x).
Thus z is a homogeneous function of degree n=2. According to Euler’s theorem,
x∂z∂x+y∂z∂y=2z
∂z∂x=∂z∂u×∂u∂x=sec2u∂u∂x∂z∂y=∂z∂u×∂u∂y=sec2u∂u∂y
Now,
x∂z∂x+y∂z∂y=2zx(sec2u∂u∂x)+y(sec2u∂u∂y)=2tanux∂u∂x+y∂u∂y=2tanusec2u=2sinucosu×cos2u=2sinucosux∂u∂x+y∂u∂y=sin2u
- If u=sin−1x2+y2x+y, prove that x∂u∂x+y∂u∂y=tanu. (TU 2058, 2062, 2066)
Let z=sinu=x2+y2x+y. This function is a homogeneous one with degree 1.
Now,
x∂z∂x+y∂z∂y=1×z
∂z∂x=∂z∂u×∂u∂x=cosu∂u∂x∂z∂y=∂z∂u×∂u∂y=cosu∂u∂y
Now,
x∂z∂x+y∂z∂y=1×zxcosu∂u∂x+ycosu∂u∂y=sinux∂u∂x+y∂u∂y=tanu
- If sinv=√x−√y√x+√y, prove that x∂v∂x+y∂v∂y=0.
Let
z=sinv=√x−√y√x+√y=√x(1−(y/x)1/2)√x(1+(y/x)1/2)=x0(1−(y/x)1/2)(1+(y/x)1/2)=x0f(yx)
Thus z is a homogeneous function of degree 0.
According to Euler’s theorem,
x∂z∂x+y∂z∂y=0.z
∂z∂x=∂z∂v×∂v∂x=cosv∂v∂x∂z∂y=∂z∂v×∂v∂y=cosv∂v∂y
Now,
x∂z∂x+y∂z∂y=0xcosv∂v∂x+ycosv∂v∂y=0x∂v∂x+y∂v∂y=0
Hence proved.
- If v=logx2+y2x+y, prove that x∂v∂x+y∂v∂y=1.
Let z=ev=x2+y2x+y. Thus z is a homogeneous function of degree 1. Thus according to Euler’s theorem,
x∂z∂x+y∂z∂y=1.z
∂z∂x=∂z∂v×∂v∂x=ev∂v∂x∂z∂y=∂z∂v×∂v∂y=ev∂v∂y
Substituting these partial derivative values in Euler’s theorem,
x∂z∂x+y∂z∂y=1.zxev∂v∂x+yev∂v∂y=1.evx∂v∂x+y∂v∂y=1
Hence proved.
19.1.3 Question 3
Find dzdt if
- z=xlogy,x=t2,y=et
This is a composite function. So,
dzdt=∂z∂x×dxdt+∂z∂y×dydt
Now,
∂z∂x=logy∂z∂y=xydxdt=2tdydt=et
Now substituting these values in the derivative of composite function
dzdt=∂z∂x×dxdt+∂z∂y×dydt=logy.2t+xy.et=t.2t+t2et.etdzdt=3t2
- z=x2sin(ax+by),x=2t+1,y=t2−1
The given function is a composite function.
∂z∂x=x2cos(ax+by)×a+sin(ax+by)×2x∂z∂y=x2cos(ax+by)×bdxdt=2dydt=2t
Now substituting these values in the derivative of composite function
dzdt=∂z∂x×dxdt+∂z∂y×dydt
dzdt=2(ax2cos(ax+by)+2xsin(ax+by))+2btx2cos(ax+by)=2x2cos(ax+by)(a+bt)+4xsin(ax+by)=2(a+bt)(2t+1)2cos{a(2t+1)+b(t2−1)}+4(2t+1)sin{a(2t+1)+b(t2−1)}
Find dzdx if z=(y+x)exy,y=1x2
Here z=(y+x)exy
∂z∂x=(y+x)exy.y+exy∂z∂y=(y+x)exy.x+exydydx=−2x3
So the total derivative is given by
dzdx=∂z∂x+∂z∂y×dydx=(y+x)exyy+exy+[(y+x)exyx+exy]×(−2x3)=exy(y2+xy+1−2yx2−2x−2x3)=e1/x(1x4+1x+1−2x4−2x−2x3)=e1/x(1−1x−2x3−1x4)
19.1.4 Question 4
If z=f(x,y) and if x=eu+e−v,y=e−u−ev, prove that ∂z∂u−∂z∂v=x∂z∂x−y∂z∂y.
Here, the function z is a composite function of two variables u and v. So,
∂z∂u=∂z∂x.∂x∂u+∂z∂y.∂y∂u=∂z∂x.eu−∂z∂y.e−u∂z∂v=∂z∂x.∂x∂v+∂z∂y.∂y∂v=−∂z∂x.e−v−∂z∂y.ev
Now,
Subtracting ∂z∂v from ∂z∂u,
∂z∂u−∂z∂v=∂z∂x.eu−∂z∂y.e−u+∂z∂x.e−v+∂z∂y.ev=∂z∂x(eu+e−v)−∂z∂y(e−u−ev)
Substituting x=eu+e−v,y=e−u−ev, we have
∂z∂u−∂z∂v=x∂z∂x−y∂z∂y
19.1.5 Question 5
Find dydx in the following cases
- x3+y3=3axy
Let f(x,y)=x3+y3−3axy=0. Then,
fx=3x2−3ayfy=3y2−3ax
So,
dydx=−fxfy=−3x2−3ay3y2−3axdydx=x2−ayax−y2
- x2/3+y2/3=a2/3
Let f(x,y)=x2/3+y2/3−a2/3=0. Then,
fx=23x−1/3fy=23y−1/3
So,
dydx=−fxfy=−23x−1/323y−1/3dydx=−(yx)1/3
- xy=yx
Let f(x,y)=xy−yx=0. Then taking partial derivative w.r.t x taking y as constant.
fx=yxy−1−yxlogy
Also taking partial derivative w.r.t y taking x as constant.
fy=xylogx−xyx−1
So,
dydx=−fxfy=−yxy−1−yxlogyxylogx−xyx−1=−yxyx−yxlogyyxlogx−xyyx=−yx−logylogx−xy=y−xlogyxx−ylogxydydx=y(y−xlogy)x(x−ylogx)
- xpyq=(x+y)p+q
Let f(x,y)=xpyq−(x+y)p+q=0. Then
fx=pxp−1yq−(p+q)(x+y)p+q−1fy=qxpyq−1−(p+q)(x+y)p+q−1
So,
dydx=−fxfy=−pxp−1yq−(p+q)(x+y)p+q−1qxpyq−1−(p+q)(x+y)p+q−1=−pxxpyq−(p+q)xpyqx+yqyxpyq−(p+q)xpyqx+y=−px−p+qx+yqy−p+qx+y=−px+py−px−qxx(x+y)qx+qy−py−qyy(x+y)=py−qxx×ypy−qxdydx=yx
- (tanx)y+(y)tanx=0
Here, f(x,y)=(tanx)y+(y)tanx=0.
Taking partial derivative w.r.t x setting y as constant,
∂f∂x=fx=y(tanx)y−1sec2x+logy.ytanx.sec2x
Also taking partial derivative w.r.t y setting x as constant,
∂f∂y=fy=(tanx)ylog(tanx)+tanx.ytanx−1
So,
dydx=−fxfy=−y(tanx)y−1sec2x+logy.ytanx.sec2x(tanx)ylog(tanx)+tanxytanx−1dydx=−sec2x(y(tanx)y−1+ytanxlogy)(tanx)ylog(tanx)+tanx.ytanx−1
19.1.6 Question 6
If x√1−y2+y√1−x2=a, show that
d2ydx2=−a(1−x2)3/2
The given equation is
x√1−y2+y√1−x2=a
which can be written as f(x,y)=x√1−y2+y√1−x2−a=0. Then
fx=√1−y2+y.12√1−x2×(−2x)=√1−y2−xy√1−x2fy=x2√1−y2×(−2y)+√1−x2=−xy√1−y2+√1−x2
Then,
dydx=−fxfy=−√1−y2−xy√1−x2−xy√1−y2+√1−x2=−(√1−y2√1−x2−xy)√1−x2×√1−y2−xy+√1−x2√1−y2dydx=−√1−y2√1−x2
Now,
d2ydx2=ddx(dydx)=ddx(−√1−y2√1−x2)=−√1−x212√1−y2.(−2ydydx)−√1−y2×12√1−x2×(−2x)(1−x2)=−−2y√1−x22√1−y2×(−√1−y2√1−x2)+2x√1−y22√1−x2(1−x2)=−y+x√1−y2√1−x2(1−x2)d2ydx2=−y√1−x2+x√1−y2(1−x2)3/2
Substituting numerator from (19.1), we get
d2ydx2=−a(1−x2)3/2