Chapter 19 Partial Differentiation-II

Review this video on homogeneous functions and Euler’s theorem before working on the questions.

19.1 Exercise 10(ii)

19.1.1 Question 1

Verify Euler’s theorem for the following functions:

  1. u=ax2+2hxy+by2

The given equation is a homogeneous function of degree n=2, so we expect xux+yuy=nu=2u according to Euler’s theorem.

xux+yuy=x(2ax+2hy)+y(2hx+2by)=2ax2+2hxy+2hxy+2by2=2(ax2+2hxy+by2)=2u

Thus, Euler’s theorem is verified.

  1. u=x3+y3+z33xyz

This is a homogeneous function of degree n=3 with three independent variables f(x,y,z). So from Euler’s theorem, we expect

xux+yuy+zuz=nu=3u

ux=3x23yzuy=3y23xzuz=3z23xy

So,

xux+yuy+zuz=x(3x23yz)+y(3y23xz)+z(3z23xy)=3x33xyz+3y33xyz+3z33xyz=3(x3+y3+z33xyz)=3u

Thus, Euler’s theorem verified.

  1. u=(x2+y2)1/3

This is a homogeneous function of degree n=2/3. So we expect xux+yuy=23u.

xux+yuy=x13(x2+y2)2/3×2x+y13(x2+y2)2/3×2y=23x2(x2+y2)2/3+23y2(x2+y2)2/3=23(x2+y2)2/3(x2+y2)=23(x2+y2)1/3=23u

  1. u=xntan1(yx) (TU 2061, 2065)

Here, f(x,y)=u=xntan1(yx). Then f(λx,λy)=(λx)ntan1(λyλx)=(λ)nxntan1(yx)=(λ)nf(x,y).

Thus the given function is a homogeneous function of degree n. So from Euler’s theorem, we expect xux+yuy=nu=nxntan1(yx).

xux+yuy=x(xn11+(y/x)2×(y/x2)+tan1(yx)nxn1)+y(xn11+(y/x)2×1x)=y1+(y/x)2×xn1+tan1(yx)nxn+y1+(y/x)2×xn1=nxntan1(yx)=nu

Hence, Euler’s theorem is verified.

  1. u=xf(yx)

This is a homogeneous function of degree 1. So we expect

xux+yuy=1u=u=xf(yx)

ux=xf(yx)×(yx2)+f(yx)uy=x(f(yx)×1x)

xux+yuy=x(xf(yx)×(yx2)+f(yx))+yx(f(yx)×1x)=yf(yx)+xf(yx)+yf(yx)=xf(yx)=1×u=u

  1. u=x1/4+y1/4x1/5+y1/5

The function can be written as

u=x1/4+y1/4x1/5+y1/5=x1/4(1+(y/x)1/4)x1/5(1+(y/x)1/5)=x1/20(1+(y/x)1/4)(1+(y/x)1/5)u=x1/20ϕ(yx)

Thus this is a homogeneous function of degree n=1/20. So we expect

xux+yuy=120u

ux=x1/20ϕ(y/x)(y/x2)+ϕ(y/x)×(120)x1201uy=x1/20ϕ(y/x)×1x

xux+yuy=x(x1/20ϕ(y/x)(y/x2)+ϕ(y/x)×(120)x1201)+y(x1/20ϕ(y/x)×1x)=120x1/20ϕ(y/x)=120u

Hence, Euler’s theorem is verified.

  1. u=xnsin(yx)

Here, f(x,y)=u=xnsin(yx).

f(λx,λy)=(λx)nsin(λyλx)=(λ)nxnsin(yx)=(λ)nf(x,y). Thus the given function is a homogeneous one with degree n.

So we need to prove

xux+yuy=nu=nxnsin(yx)

ux=xncos(y/x)×(y/x2)+sin(y/x)nxn1uy=xncos(y/x)×(1/x)

xux+yuy=x(xncos(y/x)×(y/x2)+sin(y/x)nxn1)+y(xncos(y/x)×(1/x))=xn1ycos(y/x)+nxnsin(y/x)+xn1ycos(y/x)=nxnsin(yx)=nu

Thus, Euler’s theorem is verified.

19.1.2 Question 2

  1. If u=tan1x3+y3xy, xy, prove that xux+yuy=sin2u. (TU 2054)

u is not a homogeneous function of x and y.

Let z=tanu=x3+y3xy=x3(1+(y/x)3)x(1(y/x))=x2(1+(y/x)3)1(y/x).

Thus z is a homogeneous function of degree n=2. According to Euler’s theorem,

xzx+yzy=2z

zx=zu×ux=sec2uuxzy=zu×uy=sec2uuy

Now,

xzx+yzy=2zx(sec2uux)+y(sec2uuy)=2tanuxux+yuy=2tanusec2u=2sinucosu×cos2u=2sinucosuxux+yuy=sin2u

  1. If u=sin1x2+y2x+y, prove that xux+yuy=tanu. (TU 2058, 2062, 2066)

Let z=sinu=x2+y2x+y. This function is a homogeneous one with degree 1.

Now,

xzx+yzy=1×z

zx=zu×ux=cosuuxzy=zu×uy=cosuuy

Now,

xzx+yzy=1×zxcosuux+ycosuuy=sinuxux+yuy=tanu

  1. If sinv=xyx+y, prove that xvx+yvy=0.

Let

z=sinv=xyx+y=x(1(y/x)1/2)x(1+(y/x)1/2)=x0(1(y/x)1/2)(1+(y/x)1/2)=x0f(yx)

Thus z is a homogeneous function of degree 0.

According to Euler’s theorem,

xzx+yzy=0.z

zx=zv×vx=cosvvxzy=zv×vy=cosvvy

Now,

xzx+yzy=0xcosvvx+ycosvvy=0xvx+yvy=0

Hence proved.

  1. If v=logx2+y2x+y, prove that xvx+yvy=1.

Let z=ev=x2+y2x+y. Thus z is a homogeneous function of degree 1. Thus according to Euler’s theorem,

xzx+yzy=1.z

zx=zv×vx=evvxzy=zv×vy=evvy

Substituting these partial derivative values in Euler’s theorem,

xzx+yzy=1.zxevvx+yevvy=1.evxvx+yvy=1

Hence proved.

19.1.3 Question 3

  1. Find dzdt if

    1. z=xlogy,x=t2,y=et

    This is a composite function. So,

    dzdt=zx×dxdt+zy×dydt

    Now,

    zx=logyzy=xydxdt=2tdydt=et

    Now substituting these values in the derivative of composite function

    dzdt=zx×dxdt+zy×dydt=logy.2t+xy.et=t.2t+t2et.etdzdt=3t2

    1. z=x2sin(ax+by),x=2t+1,y=t21

    The given function is a composite function.

    zx=x2cos(ax+by)×a+sin(ax+by)×2xzy=x2cos(ax+by)×bdxdt=2dydt=2t

    Now substituting these values in the derivative of composite function

    dzdt=zx×dxdt+zy×dydt

    dzdt=2(ax2cos(ax+by)+2xsin(ax+by))+2btx2cos(ax+by)=2x2cos(ax+by)(a+bt)+4xsin(ax+by)=2(a+bt)(2t+1)2cos{a(2t+1)+b(t21)}+4(2t+1)sin{a(2t+1)+b(t21)}

  2. Find dzdx if z=(y+x)exy,y=1x2

Here z=(y+x)exy

zx=(y+x)exy.y+exyzy=(y+x)exy.x+exydydx=2x3

So the total derivative is given by

dzdx=zx+zy×dydx=(y+x)exyy+exy+[(y+x)exyx+exy]×(2x3)=exy(y2+xy+12yx22x2x3)=e1/x(1x4+1x+12x42x2x3)=e1/x(11x2x31x4)

19.1.4 Question 4

If z=f(x,y) and if x=eu+ev,y=euev, prove that zuzv=xzxyzy.

Here, the function z is a composite function of two variables u and v. So,

zu=zx.xu+zy.yu=zx.euzy.euzv=zx.xv+zy.yv=zx.evzy.ev

Now,

Subtracting zv from zu,

zuzv=zx.euzy.eu+zx.ev+zy.ev=zx(eu+ev)zy(euev)

Substituting x=eu+ev,y=euev, we have

zuzv=xzxyzy

19.1.5 Question 5

Find dydx in the following cases

  1. x3+y3=3axy

Let f(x,y)=x3+y33axy=0. Then,

fx=3x23ayfy=3y23ax

So,

dydx=fxfy=3x23ay3y23axdydx=x2ayaxy2

  1. x2/3+y2/3=a2/3

Let f(x,y)=x2/3+y2/3a2/3=0. Then,

fx=23x1/3fy=23y1/3

So,

dydx=fxfy=23x1/323y1/3dydx=(yx)1/3

  1. xy=yx

Let f(x,y)=xyyx=0. Then taking partial derivative w.r.t x taking y as constant.

fx=yxy1yxlogy

Also taking partial derivative w.r.t y taking x as constant.

fy=xylogxxyx1

So,

dydx=fxfy=yxy1yxlogyxylogxxyx1=yxyxyxlogyyxlogxxyyx=yxlogylogxxy=yxlogyxxylogxydydx=y(yxlogy)x(xylogx)

  1. xpyq=(x+y)p+q

Let f(x,y)=xpyq(x+y)p+q=0. Then

fx=pxp1yq(p+q)(x+y)p+q1fy=qxpyq1(p+q)(x+y)p+q1

So,

dydx=fxfy=pxp1yq(p+q)(x+y)p+q1qxpyq1(p+q)(x+y)p+q1=pxxpyq(p+q)xpyqx+yqyxpyq(p+q)xpyqx+y=pxp+qx+yqyp+qx+y=px+pypxqxx(x+y)qx+qypyqyy(x+y)=pyqxx×ypyqxdydx=yx

  1. (tanx)y+(y)tanx=0

Here, f(x,y)=(tanx)y+(y)tanx=0.

Taking partial derivative w.r.t x setting y as constant,

fx=fx=y(tanx)y1sec2x+logy.ytanx.sec2x

Also taking partial derivative w.r.t y setting x as constant,

fy=fy=(tanx)ylog(tanx)+tanx.ytanx1

So,

dydx=fxfy=y(tanx)y1sec2x+logy.ytanx.sec2x(tanx)ylog(tanx)+tanxytanx1dydx=sec2x(y(tanx)y1+ytanxlogy)(tanx)ylog(tanx)+tanx.ytanx1

19.1.6 Question 6

If x1y2+y1x2=a, show that

d2ydx2=a(1x2)3/2

The given equation is

x1y2+y1x2=a

which can be written as f(x,y)=x1y2+y1x2a=0. Then

fx=1y2+y.121x2×(2x)=1y2xy1x2fy=x21y2×(2y)+1x2=xy1y2+1x2

Then,

dydx=fxfy=1y2xy1x2xy1y2+1x2=(1y21x2xy)1x2×1y2xy+1x21y2dydx=1y21x2

Now,

d2ydx2=ddx(dydx)=ddx(1y21x2)=1x2121y2.(2ydydx)1y2×121x2×(2x)(1x2)=2y1x221y2×(1y21x2)+2x1y221x2(1x2)=y+x1y21x2(1x2)d2ydx2=y1x2+x1y2(1x2)3/2

Substituting numerator from (19.1), we get

d2ydx2=a(1x2)3/2