Chapter 20 Maxima and minima of functions of two and three variables-I

Watch this video that covers the concept of maxima, minima of three variables intuitively and clearly before proceeding further.

20.0.1 Question 1

Examine for maxima and minima and obtain these values for following functions

  1. f=x2xy+y2+3x2y+1f=x2xy+y2+3x2y+1

Here,

fx=2xy+3fy=x+2y2fxx=2fxy=1fyy=2fx=2xy+3fy=x+2y2fxx=2fxy=1fyy=2

For extreme values,

fx=02xy+3=0fx=02xy+3=0(20.1)

fy=0x+2y2=0fy=0x+2y2=0(20.2)

Solving (20.1) and (20.2), we get x=43,y=13x=43,y=13.

For point (43,13)(43,13),

fxy=1fxy=1

Thus fxx>0fxx>0 and fxxfyy(fxy)2=2×2(1)2=3fxxfyy(fxy)2=2×2(1)2=3 which is >0>0. Thus f(x,y)f(x,y) has a minimum at (43,13)(43,13). Its value is

=169+49+19423+1=219(9+23)=219113=43=169+49+19423+1=219(9+23)=219113=43


  1. u=16(x+2)2(y2)2u=16(x+2)2(y2)2

Here,

ux=2(x+2)uy=2(y2)uxx=2uxy=0uyy=2ux=2(x+2)uy=2(y2)uxx=2uxy=0uyy=2

For extreme values,

ux=0x=2ux=0x=2

uy=0y=2uy=0y=2

The stationary point is thus (2,2)(2,2). So

uxxuyy(uxy)2=(2)×(2)0=4>0uxxuyy(uxy)2=(2)×(2)0=4>0

Thus uxx<0uxx<0 and uxxuyy(uxy)2>0uxxuyy(uxy)2>0. Thus u(x,y)u(x,y) has a local maximum at (2,2)(2,2). Its value is

=1600=16=1600=16


  1. z=84x+4yx2y2z=84x+4yx2y2

Here,

zx=42xzy=42yzxx=2zxy=0zyy=2zx=42xzy=42yzxx=2zxy=0zyy=2

For extreme values,

zx=0x=2zx=0x=2

zy=0y=2zy=0y=2

The stationary point is thus (2,2)(2,2). So

zxxzyy(zxy)2=(2)×(2)0=4>0zxxzyy(zxy)2=(2)×(2)0=4>0

Thus zxx<0zxx<0 and zxxzyy(zxy)2>0zxxzyy(zxy)2>0. Thus z(x,y)z(x,y) has a local maximum at (2,2)(2,2). Its value is

=8+8+844=16=8+8+844=16


  1. z=x3x2y2+xyz=x3x2y2+xy

Here,

zx=3x22x+yzy=2y+xzxx=6x2zxy=1zyy=2zx=3x22x+yzy=2y+xzxx=6x2zxy=1zyy=2

For extreme values,

zx=03x22x+y=0zx=03x22x+y=0(20.3)

zy=0x2y=0zy=0x2y=0(20.4)

Solving (20.3) and (20.4), we get x=0,12x=0,12.

The function zz has extreme points at (0,0) and (1/2,1/4)(1/2,1/4).

At (0,0)(0,0),

zxx=2zxxzyy(zxy)2=(2)×(2)1=3zxx=2zxxzyy(zxy)2=(2)×(2)1=3

Thus zxx<0zxx<0 and zxxzyy(zxy)2>0zxxzyy(zxy)2>0. Thus z(x,y)z(x,y) has a maximum at (0,0)(0,0) and its value is 00.

At (1/2,1/4)(1/2,1/4),

zxx=1zxxzyy(zxy)2=1×(2)1=3zxx=1zxxzyy(zxy)2=1×(2)1=3

Thus zxx>0zxx>0 and zxxzyy(zxy)2<0zxxzyy(zxy)2<0. Thus z(x,y)z(x,y) has neither a maximum nor minimum at (1/2,1/4)(1/2,1/4) i.e. its a saddle point.


  1. u=2x2+xy+4y2+xz+z2+2u=2x2+xy+4y2+xz+z2+2

The given function uu has three variables that can be represented as u(x,y,z)u(x,y,z).

Here,

ux=4x+y+zuy=x+8yuz=x+2zuxx=4uxy=1uxz=1uyx=1uyy=8uyz=0uzx=1uzy=0uzz=2ux=4x+y+zuy=x+8yuz=x+2zuxx=4uxy=1uxz=1uyx=1uyy=8uyz=0uzx=1uzy=0uzz=2

For extreme values,

ux=04x+y+z=0ux=04x+y+z=0(20.5)

uy=0x+8y=0uy=0x+8y=0(20.6)

uz=0x+2z=0uz=0x+2z=0(20.7)

Solving (20.5), (20.6) and (20.7), we get x=0,y=0,z=0x=0,y=0,z=0. The stationary point is therefore (0,0,0)(0,0,0).

Here, uxx>0uxx>0,

|uxxuxyuyxuyy|=|4118|=31>0uxxuxyuyxuyy=4118=31>0

and

|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|411180102|=54>0∣ ∣ ∣uxxuxyuxzuyxuyyuyzuzxuzyuzz∣ ∣ ∣=∣ ∣411180102∣ ∣=54>0

Thus uu has minimum value at (0,0,0)(0,0,0) and the value is

u(0,0,0)=2u(0,0,0)=2


  1. ϕ=35(2x+3)2(y4)2(z+1)2ϕ=35(2x+3)2(y4)2(z+1)2

The given function ϕϕ has three variables that can be represented as ϕ(x,y,z)ϕ(x,y,z).

Here,

ϕx=2(2x+3)×2=4(2x+3)ϕy=2(y4)ϕz=2(z+1)ϕxx=8ϕxy=0ϕxz=0ϕyx=0ϕyy=2ϕyz=0ϕzx=0ϕzy=0ϕzz=2ϕx=2(2x+3)×2=4(2x+3)ϕy=2(y4)ϕz=2(z+1)ϕxx=8ϕxy=0ϕxz=0ϕyx=0ϕyy=2ϕyz=0ϕzx=0ϕzy=0ϕzz=2

For extreme values,

ϕx=04(2x+3)=0x=32ϕx=04(2x+3)=0x=32

ϕy=02(y4)=0y=4ϕy=02(y4)=0y=4

ϕz=02(z+1)=0z=1ϕz=02(z+1)=0z=1

The stationary point is thus (32,4,1)(32,4,1).

Here, ϕxx=8<0ϕxx=8<0,

|ϕxxϕxyϕyxϕyy|=|8002|=16>0ϕxxϕxyϕyxϕyy=8002=16>0

and

|ϕxxϕxyϕxzϕyxϕyyϕyzϕzxϕzyϕzz|=|800020002|=32<0∣ ∣ ∣ϕxxϕxyϕxzϕyxϕyyϕyzϕzxϕzyϕzz∣ ∣ ∣=∣ ∣800020002∣ ∣=32<0

Thus ϕϕ has maximum value at (3/2,4,1)(3/2,4,1) and the value is

ϕ(32,4,1)=35000=35ϕ(32,4,1)=35000=35

20.0.2 Question 2

Examine for maxima and minima of following functions

  1. 2x23xy+4y2+52x23xy+4y2+5 (TU 2065)

Let u=2x23xy+4y2+5u=2x23xy+4y2+5, this is a function of two variables u(x,y)u(x,y).

ux=4x3yuy=3x+8yuxx=4uxy=3uyy=8uyx=3ux=4x3yuy=3x+8yuxx=4uxy=3uyy=8uyx=3

For extreme values,

ux=04x3y=0ux=04x3y=0(20.8)

uy=03x+8y=0uy=03x+8y=0(20.9)

Solving (20.8) and (20.9), we get x=0,y=0x=0,y=0. The stationary point is thus (0,0)(0,0).

Here, uxx=4>0uxx=4>0 and

|uxxuxyuyxuyy|=|4338|=329=23>0uxxuxyuyxuyy=4338=329=23>0

So uu has minimum at (0,0)(0,0) and the value is 55.


  1. xy+a3x+a3yxy+a3x+a3y

Let f=xy+a3x+a3yf=xy+a3x+a3y which is a function of two variables f(x,y)f(x,y).

fx=ya3x2fy=xa3y2fxx=2a3x3fyy=2a3y3fx=ya3x2fy=xa3y2fxx=2a3x3fyy=2a3y3

For extreme values,

fx=0ya3x2=0x2y=a3fx=0ya3x2=0x2y=a3(20.10)

fy=0xa3y2=0xy2=a3fy=0xa3y2=0xy2=a3(20.11)

Solving (20.10) and (20.11), we get x=a,y=ax=a,y=a. The stationary point is therefore (a,a)(a,a). At point (a,a)(a,a), fxx=2>0fxx=2>0 and fyy=2fyy=2 and

|fxxfxyfyxfyy|=|2112|=3>0fxxfxyfyxfyy=2112=3>0

Thus function has minimum at (a,a)(a,a) and the value is a2+a2+a2=3a2a2+a2+a2=3a2.


  1. x3+y312x3y+20x3+y312x3y+20

Let f=x3+y312x3y+20f=x3+y312x3y+20 which is a function of two variables f(x,y)f(x,y).

fx=3x212fy=3y23fxx=6xfyy=6yfxy=0fyx=0fx=3x212fy=3y23fxx=6xfyy=6yfxy=0fyx=0

For extreme values,

fx=03x212=0x=±2fy=03y23=0y=±1fx=03x212=0x=±2fy=03y23=0y=±1

Thus there are four possible extreme points (2,1),(2,1),(2,1)(2,1),(2,1),(2,1) and (2,1)(2,1).

At (2,1)(2,1),

fxx=12>0fyy=6fxx=12>0fyy=6

|fxxfxyfyxfyy|=|12006|=72>0fxxfxyfyxfyy=12006=72>0

Thus ff has a minimum at (2,1)(2,1) and value is 8+1243+20=28+1243+20=2.

At (2,1)(2,1),

fxx=12>0fyy=6fxx=12>0fyy=6

and

|fxxfxyfyxfyy|=|12006|=72<0fxxfxyfyxfyy=12006=72<0

It has neither maximum nor minimum at (2,1)(2,1) i.e. it is a saddle point.

At (2,1)(2,1),

fxx=12<0fyy=6fxx=12<0fyy=6

and

|fxxfxyfyxfyy|=|12006|=72<0fxxfxyfyxfyy=12006=72<0

So there is saddle point at (2,1)(2,1).

At (2,1)(2,1),

fxx=12<0fyy=6fxx=12<0fyy=6

and

|fxxfxyfyxfyy|=|12006|=72>0fxxfxyfyxfyy=12006=72>0

Thus there is maximum at (2,1)(2,1) and the maximum value is f(2,1)=81+24+3+20=38f(2,1)=81+24+3+20=38.

Plotting of $x^3 + y^3 - 12x -3y + 20$ showing two saddle points, one maximum and one minimum

Figure 20.1: Plotting of x3+y312x3y+20x3+y312x3y+20 showing two saddle points, one maximum and one minimum


  1. y2+2x25x4+4x5y2+2x25x4+4x5

Let f=y2+2x25x4+4x5f=y2+2x25x4+4x5 which is a function of two variables (x,y)(x,y).

fx=4x20x3+20x4fy=2yfxx=460x2+80x3fxy=0fyx=0fyy=2fx=4x20x3+20x4fy=2yfxx=460x2+80x3fxy=0fyx=0fyy=2

For extreme values ,

fx=04x20x3+20x4=0x(15x2+5x3)=0fx=04x20x3+20x4=0x(15x2+5x3)=0(20.12)

fy=02y=0y=0fy=02y=0y=0(20.13)

From (20.12), there are two real solutions and two imaginary solutions.

Real solutions are x=0,332110+1710313332110+1710+13x=0,332110+1710313332110+1710+13

Imaginary solutions are x=1313(123i2)332110+1710(123i2)332110+17103,13(12+3i2)332110+1710313(12+3i2)332110+1710

Solving 15x2+5x3 is cumbersome manually, so I solved it with sympy in python with the following code

from sympy.solvers import solve
from sympy import *
x = Symbol('x')

solutions=solve(1 - 5*x**2 + 5*x**3 , x, dict=True)
for i in solutions:
    print(latex(i.get(x)))

For any x value, y=0.

Taking (0,0),

fxx=4>0fyy=2fxy=0fyx=0

and

|fxxfxyfyxfyy|=|4002|=8>0

Thus the given function with two variables (x,y) have minimum at (0,0).

Plotting of $y^2+ 2x^2-5x^4+4x^5$

Figure 20.2: Plotting of y2+2x25x4+4x5

Plotting shows minimum at (0,0).


  1. 3x2+6xz+4y2y26z2

The given function has three variables. Let u(x,y,z)=3x2+6xz+4y2y26z2.

Here,

ux=6x+6zuy=44yuz=6x12zuxx=6uxy=0uxz=6uyx=0uyy=4uyz=0uzx=6uzy=0uzz=12

For extreme values,

ux=06x+6z=0x+z=0

uy=044y=01y=0

uz=06x12z=0x2z=0

Solving (20.14), (20.15) and (20.16), we get x=0,y=1,z=0. The stationary point is therefore (0,1,0).

Here, uxx=6<0,

|uxxuxyuyxuyy|=|6004|=24>0

and

|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|6060406012|=144<0

Thus u has maximum value at (0,1,0) and the value is

u(0,1,0)=42=2

20.0.3 Question 3

Find the maximum and minimum values of

  1. x3y2(1xy),x0,y0,x+y1

Here f=x3y2(1xy),x0,y0,x+y1.

fx=y2[x3.(1)+(1xy).3x2]=x3y2+3x2y2(1xy)fyx=2x3y+3x2[y2.(1)+(1xy).2y]=2x3y3x2y2+6x2y(1xy)fy=x3[y2.(1)+(1xy).2y]=x3y2+2x3y(1xy)fxy=3x2y2+2y[x3.(1)+(1xy).(3x2)]=3x2y22x3y+6x2y(1xy)=2x3y3x2y2+6x2y(1xy)fxx=3x2y2+3y2[x2.(1)+(1xy).(2x)]=6x2y2+6xy2(1xy)fyy=2x3y+2x3[y.(1)+(1xy)]=4x3y+2x3(1xy)

For extreme values,

fx=0x3y2+3x2y2(1xy)=0

fy=0x3y2+2x3y(1xy)=0

Solving (20.17) and (20.18),

(1xy)(3x2y22x3y)=0x2y(1xy)(3y2x)=0

As x0,y0,x+y1,

3y2x=0x=32y

Substituting this in (20.17),

278y3y2+3×94y2y2(132yy)=0y4(278y+274(15y2))=0y4(y(278×6)+274)=0

As y0,

y(278×6)+274=0y=274×827×6y=13

Plugging this into (20.19),

x=12

The stationary point is thus (12,13). At this point we have,

fxx=6×14×19+6×12×19(11213)=16+136326=19fyy=4×18×13+2×18(11213)=16+14×16=18fxy=2×18×133×14×19+6×14×13(11213)=112112+12×16=112

Here fxx=19<0,

|fxxfxyfyxfyy|=|1911211218|=1721144=1144>0

So f has maximum at (12,13) and the value is

f(12,13)=18×19(11213)=18×19×16=1432

  1. 2(xy)2x4y4

Let f=2(xy)2x4y4 which is a function with two variables x,y. Taking partial derivatives,

fx=4(xy)4x3fy=4(xy)4y3fxx=412x2fyy=412y2fxy=4fyx=4

For extreme values,

fx=04(xy)4x3=0

fy=04(xy)4y3=0

Solving (20.20) and (20.21), we get x=y. Plugging this into (20.20),

4×(2y)+4y3=0y32y=0y(y22)=0y=0,+2,2

So the points with extreme values are (0,0),(2,2) and (2,2).

At (0,0),

fxx=4>0fyy=4fxy,fyx=4

and

|fxxfxyfyxfyy|=|4444|=1616=0

The function is thus doubtful at (0,0).

At (2,2),

fxx=20<0fyy=20fxy,fyx=4

and

|fxxfxyfyxfyy|=|204420|=384>0

So f has maximum at (2,2).

At (2,2),

fxx=20<0fyy=20fxy,fyx=4

and

|fxxfxyfyxfyy|=|204420|=384>0

So f has maximum at (2,2).

The function has thus maximum at two points (2,2) and (2,2) and the value is 8 at both points.

The plotting indeed proves this.

Plotting of $2(x-y)^2-x^4-y^4$

Figure 20.3: Plotting of 2(xy)2x4y4

  1. x3+3xy215x215y2+72x

This is a function of two variables f(x,y)=x3+3xy215x215y2+72x.

fx=3x2+3y230x+72fy=6xy30yfxx=6x30fyy=6x30fxy=6yfyx=6y

For extreme values,

fx=03x2+3y230x+72=0x2+y210x+24=0

fy=06xy30y=0y(x5)=0

Solving (20.22) and (20.23), when y=0, x=4,6 and when x=5, y=±1. So the extreme points are (4,0),(6,0),(5,1) and (5,1).

At (4,0),

fxx=6<0fyy=6fxy=0fyx=0

|fxxfxyfyxfyy| = |6006|

=36 > 0

So there is maximum at this point and the value is 64240+288=112.

At (6,0),

fxx=6>0fyy=6fxy=0fyx=0

|fxxfxyfyxfyy| = |6006|

=36 > 0

Thus there is minimum at (6,0) and the value is 216540+432=108.

At (5,1),

fxx=0fyy=0fxy=6fyx=6

|fxxfxyfyxfyy| = |0660|

=-36 < 0

At (5,1),

fxx=0fyy=0fxy=6fyx=6

|fxxfxyfyxfyy| = |0660|

=-36 < 0

The function has saddle at (5,1) and (5,1).

Plotting of $x^3+3xy^2-15x^2-15y^2+72x$

Figure 20.4: Plotting of x3+3xy215x215y2+72x

  1. 8z+2x2+3y2+4z23xy

The given function u has three variables that can be represented as u(x,y,z).

Here,

ux=4x3yuy=6y3xuz=8+8zuxx=4uxy=3uxz=0uyx=3uyy=6uyz=0uzx=0uzy=0uzz=8

For extreme values,

ux=04x3y=0

uy=06y3x=0

uz=08+8z=0z=1

Solving (20.24), (20.25) and (20.26), we get x=0,y=0,z=1. The stationary point is therefore (0,0,1).

At point (0,0,-1), uxx=4>0,

|uxxuxyuyxuyy|=|4336|=249=15>0

and

|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|430360008|=120>0

Thus all Hessian determinants |H1|,|H2|,|H3|>0. Hence u has minimum value at (0,0,1) and the value is

u(0,0,1)=8+4=4

  1. (x+y+z)33(x+y+z)24xyz+1

The given function u has three variables that can be represented as u(x,y,z).

Here,

ux=3(x+y+z)2324yzuy=3(x+y+z)2324xzuz=3(x+y+z)2324xyuxx=6(x+y+z)uxy=6(x+y+z)24zuxz=6(x+y+z)24yuyx=6(x+y+z)24zuyy=6(x+y+z)uyz=6(x+y+z)24xuzx=6(x+y+z)24yuzy=6(x+y+z)24xuzz=6(x+y+z)

For extreme values,

ux=03(x+y+z)2324yz=0

uy=03(x+y+z)2324xz=0

uz=03(x+y+z)2324xy=0

Solving (20.27), (20.28) and (20.29), we get x=y=z. And the stationary points are (1,1,1) and (1,1,1).

At point (1,1,1),

|H1|=uxx=18>0uxy=6uxz=6uyx=6uyy=18

uyz=6uzx=6uzy=6uzz=18

|H2|=|uxxuxyuyxuyy|=|186618|=288>0

and

|H3|=|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|186661866618|=3456>0

Thus all Hessian determinants |H1|,|H2|,|H3|>0. Hence u has minimum value at (1,1,1) and the value is

u(1,1,1)=27924+1=5

At point (1,1,1),

|H1|=uxx=18<0uxy=6uxz=6uyx=6

uyy=18uyz=6uzx=6uzy=6uzz=18

|H2|=|uxxuxyuyxuyy|=|186618|=288

|H3|=|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|186661866618|=3456<0

Thus Hessian determinants |H1|,|H3|<0 and |H2|>0. So the function has maximum at (1,1,1) and the value is

u(1,1,1)=27+9+24+1=7

20.0.4 Question 4

  1. Find the extreme values of xy2 when x+y=1.

Here, f(x,y)=xy2 and the condition or constraint given is x+y=1. The function f can be expressed as the function of y alone.

f=(1y)y2=y2y3fy=2y3y2fyy=26y

For extreme points,

fy=02y3y2=0y(23y)=0y=0,23

When y=0,x=1 and when y=23,x=13. So the stationary points are (1,0) and (13,23).

At (1,0), fyy=2>0. So there is minimum at this point and the value is f(1,0)=0.

At (13,23), fyy=24=2<0. So there is maximum at this point and the value is 13×49=427.

  1. Find the maximum value of u=48(x5)23(y4)2 if it is subjected to the condition x+3y=9.

The function u can be expressed in terms of y,

u=48(43y)23(y4)2uy=2(43y).(3)6(y4)=6(43y)6(y4)uyy=24

For extreme points,

uy=06(43y)6(y4)=02418y6y+24=0y=2

When y=2,x=3. The stationary point is thus (3,2). Here uyy=24<0. So there is maxima at this point and the value is:

u(3,2)=48412=32

  1. Find the extreme value of the function f=x21+x22+x23 subject to the condition that x1+x2+x3=1.

Lets define F=f+λϕ i.e. F=x21+x22+x23+λ(x1+x2+x31).

Taking partial derivatives,

Fx1=2x1+λFx2=2x2+λFx3=2x3+λFλ=x1+x2+x31

For extreme points,

Fx1=02x1+λ=0

Fx2=02x2+λ=0

Fx3=02x3+λ=0

Fλ=0x1+x2+x31=0

Solving (20.30), (20.31), (20.32) and (20.33), we get x1=x2=x3=13 and λ=23.

Since f=x21+x22+x23 and ϕ=x1+x2+x31,

fx1=2x1fx2=2x2fx3=2x3fx1x1=2fx1x2=0fx1x3=0fx2x1=0fx2x2=2fx2x3=0

fx3x1=0fx3x2=0fx3x3=2ϕx1=1ϕx2=1ϕx3=1

Now, calculating bordered Hessian determinants,

|~H1|=|0ϕx1ϕx1fx1x1|=|0112|=1

|~H2|=|0ϕx1ϕx2ϕx1fx1x1fx1x2ϕx2fx2x1fx2x2|=|011120102|=4<0

and

|~H3|=|0ϕx1ϕx2ϕx3ϕx1fx1x1fx1x2fx1x3ϕx2fx2x1fx2x2fx2x3ϕx3fx3x1fx3x2fx3x3|=12<0

Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (13,13,13) and the value is

f(13,13,13)=19+19+19=13

  1. Find the minimum value of x2+y2+z2 having given ax+by+cz=p.

Let f=x2+y2+z2 and ϕ=ax+by+czp. So

F=f+λϕ=x2+y2+z2+λ(ax+by+czp)Fx=2x+λaFy=2y+λbFz=2z+λcFλ=ax+by+czp

For extreme values,

Fx=02x+λa=0

Fy=02y+λb=0

Fz=02z+λc=0

Fλ=0ax+by+czp=0

Solving (20.34), (20.35) and (20.36), we get

xa=yb=zc

Using (20.38) in (20.37), we get

x=apa2+b2+c2y=bpa2+b2+c2z=cpa2+b2+c2λ=2pa2+b2+c2

Taking partial derivatives of f and ϕ,

fx=2xfy=2yfz=2zfxx=2fxy=0fxz=0fyx=0fyy=2fyz=0

fzx=0fzy=0fzz=2ϕx=aϕy=bϕz=c

Now calculating bordered Hessian determinants,

|~H1|=|0ϕxϕxfxx|=|0aa2|=a2<0

|~H2|=|0ϕxϕyϕxfxxfxyϕyfyxfyy|=|0aba20b02|=2a22b2<0

|~H3|=|0ϕxϕyϕzϕxfxxfxyfxzϕyfyxfyyfyzϕzfzxfzyfzz|=|0abca200b020c002|=4a24b24c2<0

Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (apa2+b2+c2,bpa2+b2+c2,cpa2+b2+c2) and the value is

f=x2+y2+z2=(apa2+b2+c2)2+(bpa2+b2+c2)2+(cpa2+b2+c2)2=p2a2+b2+c2

  1. Find the minimum value of x2+y2+z2 when 1x+1y+1z=1.

Let f=x2+y2+z2 and ϕ=1x+1y+1z1. So

F=f+λϕ=x2+y2+z2+λ(1x+1y+1z1)Fx=2xλx2Fy=2yλy2Fz=2zλz2Fλ=1x+1y+1z1

For extreme values,

Fx=02xλx2=0

Fy=02yλy2=0

Fz=02zλz2=0

Fλ=01x+1y+1z1=0

Solving (20.39), (20.40) and (20.41), we get x=y=z.

Putting this into (20.42), we get x=y=z=3.

Taking partial derivatives of f and ϕ,

fx=2xfy=2yfz=2zfxx=2fxy=0fxz=0fyx=0fyy=2fyz=0

fzx=0fzy=0fzz=2ϕx=1x2=19ϕy=1y2=19ϕz=1z2=19

Now calculating bordered Hessian determinants,

|~H1|=|0ϕxϕxfxx|=|019192|=181<0

|~H2|=|0ϕxϕyϕxfxxfxyϕyfyxfyy|=|0191919201902|=481<0

|~H3|=|0ϕxϕyϕzϕxfxxfxyfxzϕyfyxfyyfyzϕzfzxfzyfzz|=|0191919192001902019002|=0.148<0

Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (3,3,3) and the value is

f(3,3,3)=27