Chapter 20 Maxima and minima of functions of two and three variables-I
Watch this video that covers the concept of maxima, minima of three variables intuitively and clearly before proceeding further.
20.0.1 Question 1
Examine for maxima and minima and obtain these values for following functions
- f=x2−xy+y2+3x−2y+1f=x2−xy+y2+3x−2y+1
Here,
fx=2x−y+3fy=−x+2y−2fxx=2fxy=−1fyy=2fx=2x−y+3fy=−x+2y−2fxx=2fxy=−1fyy=2
For extreme values,
fx=02x−y+3=0fx=02x−y+3=0(20.1)
fy=0−x+2y−2=0fy=0−x+2y−2=0(20.2)
Solving (20.1) and (20.2), we get x=−43,y=13x=−43,y=13.
For point (−43,13)(−43,13),
fxy=−1fxy=−1
Thus fxx>0fxx>0 and fxxfyy−(fxy)2=2×2−(−1)2=3fxxfyy−(fxy)2=2×2−(−1)2=3 which is >0>0. Thus f(x,y)f(x,y) has a minimum at (−43,13)(−43,13). Its value is
=169+49+19−4−23+1=219−(9+23)=219−113=−43=169+49+19−4−23+1=219−(9+23)=219−113=−43
- u=16−(x+2)2−(y−2)2u=16−(x+2)2−(y−2)2
Here,
ux=−2(x+2)uy=−2(y−2)uxx=−2uxy=0uyy=−2ux=−2(x+2)uy=−2(y−2)uxx=−2uxy=0uyy=−2
For extreme values,
ux=0x=−2ux=0x=−2
uy=0y=2uy=0y=2
The stationary point is thus (−2,2)(−2,2). So
uxxuyy−(uxy)2=(−2)×(−2)−0=4>0uxxuyy−(uxy)2=(−2)×(−2)−0=4>0
Thus uxx<0uxx<0 and uxxuyy−(uxy)2>0uxxuyy−(uxy)2>0. Thus u(x,y)u(x,y) has a local maximum at (−2,2)(−2,2). Its value is
=16−0−0=16=16−0−0=16
- z=8−4x+4y−x2−y2z=8−4x+4y−x2−y2
Here,
zx=−4−2xzy=4−2yzxx=−2zxy=0zyy=−2zx=−4−2xzy=4−2yzxx=−2zxy=0zyy=−2
For extreme values,
zx=0x=−2zx=0x=−2
zy=0y=2zy=0y=2
The stationary point is thus (−2,2)(−2,2). So
zxxzyy−(zxy)2=(−2)×(−2)−0=4>0zxxzyy−(zxy)2=(−2)×(−2)−0=4>0
Thus zxx<0zxx<0 and zxxzyy−(zxy)2>0zxxzyy−(zxy)2>0. Thus z(x,y)z(x,y) has a local maximum at (−2,2)(−2,2). Its value is
=8+8+8−4−4=16=8+8+8−4−4=16
- z=x3−x2−y2+xyz=x3−x2−y2+xy
Here,
zx=3x2−2x+yzy=−2y+xzxx=6x−2zxy=1zyy=−2zx=3x2−2x+yzy=−2y+xzxx=6x−2zxy=1zyy=−2
For extreme values,
zx=03x2−2x+y=0zx=03x2−2x+y=0(20.3)
zy=0x−2y=0zy=0x−2y=0(20.4)
Solving (20.3) and (20.4), we get x=0,12x=0,12.
The function zz has extreme points at (0,0) and (1/2,1/4)(1/2,1/4).
At (0,0)(0,0),
zxx=−2zxxzyy−(zxy)2=(−2)×(−2)−1=3zxx=−2zxxzyy−(zxy)2=(−2)×(−2)−1=3
Thus zxx<0zxx<0 and zxxzyy−(zxy)2>0zxxzyy−(zxy)2>0. Thus z(x,y)z(x,y) has a maximum at (0,0)(0,0) and its value is 00.
At (1/2,1/4)(1/2,1/4),
zxx=1zxxzyy−(zxy)2=1×(−2)−1=−3zxx=1zxxzyy−(zxy)2=1×(−2)−1=−3
Thus zxx>0zxx>0 and zxxzyy−(zxy)2<0zxxzyy−(zxy)2<0. Thus z(x,y)z(x,y) has neither a maximum nor minimum at (1/2,1/4)(1/2,1/4) i.e. its a saddle point.
- u=2x2+xy+4y2+xz+z2+2u=2x2+xy+4y2+xz+z2+2
The given function uu has three variables that can be represented as u(x,y,z)u(x,y,z).
Here,
ux=4x+y+zuy=x+8yuz=x+2zuxx=4uxy=1uxz=1uyx=1uyy=8uyz=0uzx=1uzy=0uzz=2ux=4x+y+zuy=x+8yuz=x+2zuxx=4uxy=1uxz=1uyx=1uyy=8uyz=0uzx=1uzy=0uzz=2
For extreme values,
ux=04x+y+z=0ux=04x+y+z=0(20.5)
uy=0x+8y=0uy=0x+8y=0(20.6)
uz=0x+2z=0uz=0x+2z=0(20.7)
Solving (20.5), (20.6) and (20.7), we get x=0,y=0,z=0x=0,y=0,z=0. The stationary point is therefore (0,0,0)(0,0,0).
Here, uxx>0uxx>0,
|uxxuxyuyxuyy|=|4118|=31>0∣∣∣uxxuxyuyxuyy∣∣∣=∣∣∣4118∣∣∣=31>0
and
|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|411180102|=54>0∣∣ ∣ ∣∣uxxuxyuxzuyxuyyuyzuzxuzyuzz∣∣ ∣ ∣∣=∣∣ ∣∣411180102∣∣ ∣∣=54>0
Thus uu has minimum value at (0,0,0)(0,0,0) and the value is
u(0,0,0)=2u(0,0,0)=2
- ϕ=35−(2x+3)2−(y−4)2−(z+1)2ϕ=35−(2x+3)2−(y−4)2−(z+1)2
The given function ϕϕ has three variables that can be represented as ϕ(x,y,z)ϕ(x,y,z).
Here,
ϕx=−2(2x+3)×2=−4(2x+3)ϕy=−2(y−4)ϕz=−2(z+1)ϕxx=−8ϕxy=0ϕxz=0ϕyx=0ϕyy=−2ϕyz=0ϕzx=0ϕzy=0ϕzz=−2ϕx=−2(2x+3)×2=−4(2x+3)ϕy=−2(y−4)ϕz=−2(z+1)ϕxx=−8ϕxy=0ϕxz=0ϕyx=0ϕyy=−2ϕyz=0ϕzx=0ϕzy=0ϕzz=−2
For extreme values,
ϕx=0−4(2x+3)=0x=−32ϕx=0−4(2x+3)=0x=−32
ϕy=0−2(y−4)=0y=4ϕy=0−2(y−4)=0y=4
ϕz=0−2(z+1)=0z=−1ϕz=0−2(z+1)=0z=−1
The stationary point is thus (−32,4,−1)(−32,4,−1).
Here, ϕxx=−8<0ϕxx=−8<0,
|ϕxxϕxyϕyxϕyy|=|−800−2|=16>0∣∣∣ϕxxϕxyϕyxϕyy∣∣∣=∣∣∣−800−2∣∣∣=16>0
and
|ϕxxϕxyϕxzϕyxϕyyϕyzϕzxϕzyϕzz|=|−8000−2000−2|=−32<0∣∣ ∣ ∣∣ϕxxϕxyϕxzϕyxϕyyϕyzϕzxϕzyϕzz∣∣ ∣ ∣∣=∣∣ ∣∣−8000−2000−2∣∣ ∣∣=−32<0
Thus ϕϕ has maximum value at (−3/2,4,−1)(−3/2,4,−1) and the value is
ϕ(−32,4,−1)=35−0−0−0=35ϕ(−32,4,−1)=35−0−0−0=35
20.0.2 Question 2
Examine for maxima and minima of following functions
- 2x2−3xy+4y2+52x2−3xy+4y2+5 (TU 2065)
Let u=2x2−3xy+4y2+5u=2x2−3xy+4y2+5, this is a function of two variables u(x,y)u(x,y).
ux=4x−3yuy=−3x+8yuxx=4uxy=−3uyy=8uyx=−3ux=4x−3yuy=−3x+8yuxx=4uxy=−3uyy=8uyx=−3
For extreme values,
ux=04x−3y=0ux=04x−3y=0(20.8)
uy=0−3x+8y=0uy=0−3x+8y=0(20.9)
Solving (20.8) and (20.9), we get x=0,y=0x=0,y=0. The stationary point is thus (0,0)(0,0).
Here, uxx=4>0uxx=4>0 and
|uxxuxyuyxuyy|=|4−3−38|=32−9=23>0∣∣∣uxxuxyuyxuyy∣∣∣=∣∣∣4−3−38∣∣∣=32−9=23>0
So uu has minimum at (0,0)(0,0) and the value is 55.
- xy+a3x+a3yxy+a3x+a3y
Let f=xy+a3x+a3yf=xy+a3x+a3y which is a function of two variables f(x,y)f(x,y).
fx=y−a3x2fy=x−a3y2fxx=2a3x3fyy=2a3y3fx=y−a3x2fy=x−a3y2fxx=2a3x3fyy=2a3y3
For extreme values,
fx=0y−a3x2=0x2y=a3fx=0y−a3x2=0x2y=a3(20.10)
fy=0x−a3y2=0xy2=a3fy=0x−a3y2=0xy2=a3(20.11)
Solving (20.10) and (20.11), we get x=a,y=ax=a,y=a. The stationary point is therefore (a,a)(a,a). At point (a,a)(a,a), fxx=2>0fxx=2>0 and fyy=2fyy=2 and
|fxxfxyfyxfyy|=|2112|=3>0∣∣∣fxxfxyfyxfyy∣∣∣=∣∣∣2112∣∣∣=3>0
Thus function has minimum at (a,a)(a,a) and the value is a2+a2+a2=3a2a2+a2+a2=3a2.
- x3+y3−12x−3y+20x3+y3−12x−3y+20
Let f=x3+y3−12x−3y+20f=x3+y3−12x−3y+20 which is a function of two variables f(x,y)f(x,y).
fx=3x2−12fy=3y2−3fxx=6xfyy=6yfxy=0fyx=0fx=3x2−12fy=3y2−3fxx=6xfyy=6yfxy=0fyx=0
For extreme values,
fx=03x2−12=0x=±2fy=03y2−3=0y=±1fx=03x2−12=0x=±2fy=03y2−3=0y=±1
Thus there are four possible extreme points (2,1),(2,−1),(−2,1)(2,1),(2,−1),(−2,1) and (−2,−1)(−2,−1).
At (2,1)(2,1),
fxx=12>0fyy=6fxx=12>0fyy=6
|fxxfxyfyxfyy|=|12006|=72>0∣∣∣fxxfxyfyxfyy∣∣∣=∣∣∣12006∣∣∣=72>0
Thus ff has a minimum at (2,1)(2,1) and value is 8+1−24−3+20=28+1−24−3+20=2.
At (2,−1)(2,−1),
fxx=12>0fyy=−6fxx=12>0fyy=−6
and
|fxxfxyfyxfyy|=|1200−6|=−72<0∣∣∣fxxfxyfyxfyy∣∣∣=∣∣∣1200−6∣∣∣=−72<0
It has neither maximum nor minimum at (2,−1)(2,−1) i.e. it is a saddle point.
At (−2,1)(−2,1),
fxx=−12<0fyy=6fxx=−12<0fyy=6
and
|fxxfxyfyxfyy|=|−12006|=−72<0∣∣∣fxxfxyfyxfyy∣∣∣=∣∣∣−12006∣∣∣=−72<0
So there is saddle point at (−2,1)(−2,1).
At (−2,−1)(−2,−1),
fxx=−12<0fyy=−6fxx=−12<0fyy=−6
and
|fxxfxyfyxfyy|=|−1200−6|=72>0∣∣∣fxxfxyfyxfyy∣∣∣=∣∣∣−1200−6∣∣∣=72>0
Thus there is maximum at (−2,−1)(−2,−1) and the maximum value is f(−2,−1)=−8−1+24+3+20=38f(−2,−1)=−8−1+24+3+20=38.
Figure 20.1: Plotting of x3+y3−12x−3y+20x3+y3−12x−3y+20 showing two saddle points, one maximum and one minimum
- y2+2x2−5x4+4x5y2+2x2−5x4+4x5
Let f=y2+2x2−5x4+4x5f=y2+2x2−5x4+4x5 which is a function of two variables (x,y)(x,y).
fx=4x−20x3+20x4fy=2yfxx=4−60x2+80x3fxy=0fyx=0fyy=2fx=4x−20x3+20x4fy=2yfxx=4−60x2+80x3fxy=0fyx=0fyy=2
For extreme values ,
fx=04x−20x3+20x4=0x(1−5x2+5x3)=0fx=04x−20x3+20x4=0x(1−5x2+5x3)=0(20.12)
fy=02y=0y=0fy=02y=0y=0(20.13)
From (20.12), there are two real solutions and two imaginary solutions.
Real solutions are x=0,−3√3√2110+17103−133√3√2110+1710+13x=0,−3√3√2110+17103−133√3√2110+1710+13
Imaginary solutions are x=13−13(−12−√3i2)3√3√2110+1710−(−12−√3i2)3√3√2110+17103,13−(−12+√3i2)3√3√2110+17103−13(−12+√3i2)3√3√2110+1710
Solving 1−5x2+5x3 is cumbersome manually, so I solved it with sympy in python with the following code
from sympy.solvers import solve
from sympy import *
= Symbol('x')
x
=solve(1 - 5*x**2 + 5*x**3 , x, dict=True)
solutionsfor i in solutions:
print(latex(i.get(x)))
For any x value, y=0.
Taking (0,0),
fxx=4>0fyy=2fxy=0fyx=0
and
|fxxfxyfyxfyy|=|4002|=8>0
Thus the given function with two variables (x,y) have minimum at (0,0).
Figure 20.2: Plotting of y2+2x2−5x4+4x5
Plotting shows minimum at (0,0).
- −3x2+6xz+4y−2y2−6z2
The given function has three variables. Let u(x,y,z)=−3x2+6xz+4y−2y2−6z2.
Here,
ux=−6x+6zuy=4−4yuz=6x−12zuxx=−6uxy=0uxz=6uyx=0uyy=−4uyz=0uzx=6uzy=0uzz=−12
For extreme values,
ux=0−6x+6z=0−x+z=0
uy=04−4y=01−y=0
uz=06x−12z=0x−2z=0
Solving (20.14), (20.15) and (20.16), we get x=0,y=1,z=0. The stationary point is therefore (0,1,0).
Here, uxx=−6<0,
|uxxuxyuyxuyy|=|−600−4|=24>0
and
|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|−6060−4060−12|=−144<0
Thus u has maximum value at (0,1,0) and the value is
u(0,1,0)=4−2=2
20.0.3 Question 3
Find the maximum and minimum values of
- x3y2(1−x−y),x≠0,y≠0,x+y≠1
Here f=x3y2(1−x−y),x≠0,y≠0,x+y≠1.
fx=y2[x3.(−1)+(1−x−y).3x2]=−x3y2+3x2y2(1−x−y)fyx=−2x3y+3x2[y2.(−1)+(1−x−y).2y]=−2x3y−3x2y2+6x2y(1−x−y)fy=x3[y2.(−1)+(1−x−y).2y]=−x3y2+2x3y(1−x−y)fxy=−3x2y2+2y[x3.(−1)+(1−x−y).(3x2)]=−3x2y2−2x3y+6x2y(1−x−y)=−2x3y−3x2y2+6x2y(1−x−y)fxx=−3x2y2+3y2[x2.(−1)+(1−x−y).(2x)]=−6x2y2+6xy2(1−x−y)fyy=−2x3y+2x3[y.(−1)+(1−x−y)]=−4x3y+2x3(1−x−y)
For extreme values,
fx=0−x3y2+3x2y2(1−x−y)=0
fy=0−x3y2+2x3y(1−x−y)=0
(1−x−y)(3x2y2−2x3y)=0x2y(1−x−y)(3y−2x)=0
As x≠0,y≠0,x+y≠1,
3y−2x=0x=32y
Substituting this in (20.17),
−278y3y2+3×94y2y2(1−32y−y)=0y4(−278y+274(1−5y2))=0y4(y(−278×6)+274)=0
As y≠0,
y(−278×6)+274=0y=−274×8−27×6y=13
Plugging this into (20.19),
x=12
The stationary point is thus (12,13). At this point we have,
fxx=−6×14×19+6×12×19(1−12−13)=−16+136−3−26=−19fyy=−4×18×13+2×18(1−12−13)=−16+14×16=−18fxy=−2×18×13−3×14×19+6×14×13(1−12−13)=−112−112+12×16=−112
Here fxx=−19<0,
|fxxfxyfyxfyy|=|−19−112−112−18|=172−1144=1144>0
So f has maximum at (12,13) and the value is
f(12,13)=18×19(1−12−13)=18×19×16=1432
- 2(x−y)2−x4−y4
Let f=2(x−y)2−x4−y4 which is a function with two variables x,y. Taking partial derivatives,
fx=4(x−y)−4x3fy=−4(x−y)−4y3fxx=4−12x2fyy=4−12y2fxy=−4fyx=−4
For extreme values,
fx=04(x−y)−4x3=0
fy=0−4(x−y)−4y3=0
Solving (20.20) and (20.21), we get x=−y. Plugging this into (20.20),
4×(−2y)+4y3=0y3−2y=0y(y2−2)=0y=0,+√2,−√2
So the points with extreme values are (0,0),(−√2,√2) and (√2,−√2).
At (0,0),
fxx=4>0fyy=4fxy,fyx=−4
and
|fxxfxyfyxfyy|=|4−4−44|=16−16=0
The function is thus doubtful at (0,0).
At (−√2,√2),
fxx=−20<0fyy=−20fxy,fyx=−4
and
|fxxfxyfyxfyy|=|−20−4−4−20|=384>0
So f has maximum at (−√2,√2).
At (√2,−√2),
fxx=−20<0fyy=−20fxy,fyx=−4
and
|fxxfxyfyxfyy|=|−20−4−4−20|=384>0
So f has maximum at (√2,−√2).
The function has thus maximum at two points (−√2,√2) and (√2,−√2) and the value is 8 at both points.
The plotting indeed proves this.
Figure 20.3: Plotting of 2(x−y)2−x4−y4
- x3+3xy2−15x2−15y2+72x
This is a function of two variables f(x,y)=x3+3xy2−15x2−15y2+72x.
fx=3x2+3y2−30x+72fy=6xy−30yfxx=6x−30fyy=6x−30fxy=6yfyx=6y
For extreme values,
fx=03x2+3y2−30x+72=0x2+y2−10x+24=0
fy=06xy−30y=0y(x−5)=0
Solving (20.22) and (20.23), when y=0, x=4,6 and when x=5, y=±1. So the extreme points are (4,0),(6,0),(5,1) and (5,−1).
At (4,0),
fxx=−6<0fyy=−6fxy=0fyx=0
=36 > 0
So there is maximum at this point and the value is 64−240+288=112.
At (6,0),
fxx=6>0fyy=6fxy=0fyx=0
=36 > 0
Thus there is minimum at (6,0) and the value is 216−540+432=108.
At (5,1),
fxx=0fyy=0fxy=6fyx=6
=-36 < 0
At (5,−1),
fxx=0fyy=0fxy=−6fyx=−6
=-36 < 0
The function has saddle at (5,1) and (5,−1).
Figure 20.4: Plotting of x3+3xy2−15x2−15y2+72x
- 8z+2x2+3y2+4z2−3xy
The given function u has three variables that can be represented as u(x,y,z).
Here,
ux=4x−3yuy=6y−3xuz=8+8zuxx=4uxy=−3uxz=0uyx=−3uyy=6uyz=0uzx=0uzy=0uzz=8
For extreme values,
ux=04x−3y=0
uy=06y−3x=0
uz=08+8z=0z=−1
Solving (20.24), (20.25) and (20.26), we get x=0,y=0,z=−1. The stationary point is therefore (0,0,−1).
At point (0,0,-1), uxx=4>0,
|uxxuxyuyxuyy|=|4−3−36|=24−9=15>0
and
|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|4−30−360008|=120>0
Thus all Hessian determinants |H1|,|H2|,|H3|>0. Hence u has minimum value at (0,0,−1) and the value is
u(0,0,−1)=−8+4=−4
- (x+y+z)3−3(x+y+z)−24xyz+1
The given function u has three variables that can be represented as u(x,y,z).
Here,
ux=3(x+y+z)2−3−24yzuy=3(x+y+z)2−3−24xzuz=3(x+y+z)2−3−24xyuxx=6(x+y+z)uxy=6(x+y+z)−24zuxz=6(x+y+z)−24yuyx=6(x+y+z)−24zuyy=6(x+y+z)uyz=6(x+y+z)−24xuzx=6(x+y+z)−24yuzy=6(x+y+z)−24xuzz=6(x+y+z)
For extreme values,
ux=03(x+y+z)2−3−24yz=0
uy=03(x+y+z)2−3−24xz=0
uz=03(x+y+z)2−3−24xy=0
Solving (20.27), (20.28) and (20.29), we get x=y=z. And the stationary points are (1,1,1) and (−1,−1,−1).
At point (1,1,1),
|H1|=uxx=18>0uxy=−6uxz=−6uyx=−6uyy=18
uyz=−6uzx=−6uzy=−6uzz=18
|H2|=|uxxuxyuyxuyy|=|18−6−618|=288>0
and
|H3|=|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|18−6−6−618−6−6−618|=3456>0
Thus all Hessian determinants |H1|,|H2|,|H3|>0. Hence u has minimum value at (1,1,1) and the value is
u(1,1,1)=27−9−24+1=−5
At point (−1,−1,−1),
|H1|=uxx=−18<0uxy=6uxz=6uyx=6
uyy=−18uyz=6uzx=6uzy=6uzz=−18
|H2|=|uxxuxyuyxuyy|=|−1866−18|=288
|H3|=|uxxuxyuxzuyxuyyuyzuzxuzyuzz|=|−18666−18666−18|=−3456<0
Thus Hessian determinants |H1|,|H3|<0 and |H2|>0. So the function has maximum at (−1,−1,−1) and the value is
u(−1,−1,−1)=−27+9+24+1=7
20.0.4 Question 4
- Find the extreme values of xy2 when x+y=1.
Here, f(x,y)=xy2 and the condition or constraint given is x+y=1. The function f can be expressed as the function of y alone.
f=(1−y)y2=y2−y3fy=2y−3y2fyy=2−6y
For extreme points,
fy=02y−3y2=0y(2−3y)=0y=0,23
When y=0,x=1 and when y=23,x=13. So the stationary points are (1,0) and (13,23).
At (1,0), fyy=2>0. So there is minimum at this point and the value is f(1,0)=0.
At (13,23), fyy=2−4=−2<0. So there is maximum at this point and the value is 13×49=427.
- Find the maximum value of u=48−(x−5)2−3(y−4)2 if it is subjected to the condition x+3y=9.
The function u can be expressed in terms of y,
u=48−(4−3y)2−3(y−4)2uy=−2(4−3y).(−3)−6(y−4)=6(4−3y)−6(y−4)uyy=−24
For extreme points,
uy=06(4−3y)−6(y−4)=024−18y−6y+24=0y=2
When y=2,x=3. The stationary point is thus (3,2). Here uyy=−24<0. So there is maxima at this point and the value is:
u(3,2)=48−4−12=32
- Find the extreme value of the function f=x21+x22+x23 subject to the condition that x1+x2+x3=1.
Lets define F=f+λϕ i.e. F=x21+x22+x23+λ(x1+x2+x3−1).
Taking partial derivatives,
Fx1=2x1+λFx2=2x2+λFx3=2x3+λFλ=x1+x2+x3−1
For extreme points,
Fx1=02x1+λ=0
Fx2=02x2+λ=0
Fx3=02x3+λ=0
Fλ=0x1+x2+x3−1=0
Solving (20.30), (20.31), (20.32) and (20.33), we get x1=x2=x3=13 and λ=−23.
Since f=x21+x22+x23 and ϕ=x1+x2+x3−1,
fx1=2x1fx2=2x2fx3=2x3fx1x1=2fx1x2=0fx1x3=0fx2x1=0fx2x2=2fx2x3=0
fx3x1=0fx3x2=0fx3x3=2ϕx1=1ϕx2=1ϕx3=1
Now, calculating bordered Hessian determinants,
|~H1|=|0ϕx1ϕx1fx1x1|=|0112|=−1
|~H2|=|0ϕx1ϕx2ϕx1fx1x1fx1x2ϕx2fx2x1fx2x2|=|011120102|=−4<0
and
|~H3|=|0ϕx1ϕx2ϕx3ϕx1fx1x1fx1x2fx1x3ϕx2fx2x1fx2x2fx2x3ϕx3fx3x1fx3x2fx3x3|=−12<0
Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (13,13,13) and the value is
f(13,13,13)=19+19+19=13
- Find the minimum value of x2+y2+z2 having given ax+by+cz=p.
Let f=x2+y2+z2 and ϕ=ax+by+cz−p. So
F=f+λϕ=x2+y2+z2+λ(ax+by+cz−p)Fx=2x+λaFy=2y+λbFz=2z+λcFλ=ax+by+cz−p
For extreme values,
Fx=02x+λa=0
Fy=02y+λb=0
Fz=02z+λc=0
Fλ=0ax+by+cz−p=0
Solving (20.34), (20.35) and (20.36), we get
xa=yb=zc
Using (20.38) in (20.37), we get
x=apa2+b2+c2y=bpa2+b2+c2z=cpa2+b2+c2λ=−2pa2+b2+c2
Taking partial derivatives of f and ϕ,
fx=2xfy=2yfz=2zfxx=2fxy=0fxz=0fyx=0fyy=2fyz=0
fzx=0fzy=0fzz=2ϕx=aϕy=bϕz=c
Now calculating bordered Hessian determinants,
|~H1|=|0ϕxϕxfxx|=|0aa2|=−a2<0
|~H2|=|0ϕxϕyϕxfxxfxyϕyfyxfyy|=|0aba20b02|=−2a2−2b2<0
|~H3|=|0ϕxϕyϕzϕxfxxfxyfxzϕyfyxfyyfyzϕzfzxfzyfzz|=|0abca200b020c002|=−4a2−4b2−4c2<0
Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (apa2+b2+c2,bpa2+b2+c2,cpa2+b2+c2) and the value is
f=x2+y2+z2=(apa2+b2+c2)2+(bpa2+b2+c2)2+(cpa2+b2+c2)2=p2a2+b2+c2
- Find the minimum value of x2+y2+z2 when 1x+1y+1z=1.
Let f=x2+y2+z2 and ϕ=1x+1y+1z−1. So
F=f+λϕ=x2+y2+z2+λ(1x+1y+1z−1)Fx=2x−λx2Fy=2y−λy2Fz=2z−λz2Fλ=1x+1y+1z−1
For extreme values,
Fx=02x−λx2=0
Fy=02y−λy2=0
Fz=02z−λz2=0
Fλ=01x+1y+1z−1=0
Solving (20.39), (20.40) and (20.41), we get x=y=z.
Putting this into (20.42), we get x=y=z=3.
Taking partial derivatives of f and ϕ,
fx=2xfy=2yfz=2zfxx=2fxy=0fxz=0fyx=0fyy=2fyz=0
fzx=0fzy=0fzz=2ϕx=−1x2=−19ϕy=−1y2=−19ϕz=−1z2=−19
Now calculating bordered Hessian determinants,
|~H1|=|0ϕxϕxfxx|=|0−19−192|=−181<0
|~H2|=|0ϕxϕyϕxfxxfxyϕyfyxfyy|=|0−19−19−1920−1902|=−481<0
|~H3|=|0ϕxϕyϕzϕxfxxfxyfxzϕyfyxfyyfyzϕzfzxfzyfzz|=|0−19−19−19−19200−19020−19002|=−0.148<0
Thus all bordered Hessian determinants |~H1|,|~H2| and |~H3| are <0. Hence f has minimum at (3,3,3) and the value is
f(3,3,3)=27