Chapter 9 Indeterminate Forms-I

  • 0000
  • 0000
  • 0×0×
  • 11
  • 00

are indeterminate forms.

9.1 Exercise 5

9.1.1 Question 1

Evaluate the limits:

  1. limx2x32x2+2x4x25x+6limx2x32x2+2x4x25x+6

This is of form 0000, so using L’Hospital rule,

=limx23x24x+22x5=128+21=6=limx23x24x+22x5=128+21=6

  1. limx0tanxxxsinxlimx0tanxxxsinx

This is also of form 0000. So applying L’Hospital rule,

=limx0sec2x11cosx(00)=limx02sec2xtanxsinx=limx02sec2xsinxsinxcosx=limx02sec3x=2=limx0sec2x11cosx(00)=limx02sec2xtanxsinx=limx02sec2xsinxsinxcosx=limx02sec3x=2

  1. limxaxnanxalimxaxnanxa

This is also of form 0000. So applying L’Hospital rule,

=limxanxn101=nan1=limxanxn101=nan1

  1. limx0xsin1xsin3xlimx0xsin1xsin3x

The expression can be written as, =limx0xsin1xx3(sinxx)3=limx0xsin1xx3(sinxx)3

Using property of multiplication of two limits,

=limx0xsin1xx3×1, as limx0sinxx=1=limx0xsin1xx3=limx0xsin1xx3×1, as limx0sinxx=1=limx0xsin1xx3

From the chapter on Taylor and Maclaurin series, we know the expansion of,

sin1x=x+x33!+9x55!+sin1x=x+x33!+9x55!+

So,

=limx0xsin1xx3=limx0x(x+x33!+9x55!+)x3=limx0x33!9x55!x3(00)=limx0xsin1xx3=limx0x(x+x33!+9x55!+)x3=limx0x33!9x55!x3(00)

Applying L’Hospital rule,

=limx03x2645x41203x2=limx03645x21203=363=16=limx03x2645x41203x2=limx03645x21203=363=16

Alternative method

=limx0xsin1xx3(00)=limx0xsin1xx3(00)

Applying L’Hospital rule,

=limx01(1x2)1/23x2(00)=limx012(1x2)3/2×(2x)6x(00)=limx0(1x2)3/26=16=limx01(1x2)1/23x2(00)=limx012(1x2)3/2×(2x)6x(00)=limx0(1x2)3/26=16

  1. limx02sinxsin2xtan3xlimx02sinxsin2xtan3x

This can be written as,

=limx02sinxsin2xx3×(tanxx)3=limx02sinxsin2xx3×1=limx02sinxsin2xx3(00)=limx02sinxsin2xx3×(tanxx)3=limx02sinxsin2xx3×1=limx02sinxsin2xx3(00)

Applying L’Hospital rule,

=limx02cosx2cos2x3x2(00)=limx02sinx+4sin2x6x(00)=limx02cosx+8cos2x6=66=1=limx02cosx2cos2x3x2(00)=limx02sinx+4sin2x6x(00)=limx02cosx+8cos2x6=66=1

  1. limx11+logxx12x+x2limx11+logxx12x+x2

This is also of form 0000. So applying L’Hospital rule,

=limx11x12+2x(00)=limx1x22=12=limx11x12+2x(00)=limx1x22=12

  1. limx0log(1x2)logcosxlimx0log(1x2)logcosx

This is also of form 0000. So applying L’Hospital rule,

=limx011x2×(2x)tanx(00)=limx02(1x2)+4x2(1x2)2sec2x=2=limx011x2×(2x)tanx(00)=limx02(1x2)+4x2(1x2)2sec2x=2

  1. limx0xexlog(1+x)x2limx0xexlog(1+x)x2

This is also of form 0000. So applying L’Hospital rule,

=limx0xex+ex11+x2x=limx0xex+ex11+x2x

Again of form 0000, so

=limx0xex+ex+ex+1x22=0+1+1+12=32=limx0xex+ex+ex+1x22=0+1+1+12=32

  1. limx0tanxxx2tanxlimx0tanxxx2tanx

The expression can be written as,

=limx0tanxxx3tanxx=limx0tanxxx3, as limx0tanxx=0=limx0tanxxx3(00)=sec2x13x2(00)=2sec2xtanx6x(00)=sec2xtanx3x(00)=sec4x+2sec2xtan2x3=1+03=13=limx0tanxxx3tanxx=limx0tanxxx3, as limx0tanxx=0=limx0tanxxx3(00)=sec2x13x2(00)=2sec2xtanx6x(00)=sec2xtanx3x(00)=sec4x+2sec2xtan2x3=1+03=13

  1. limx0coshxcosxxsinxlimx0coshxcosxxsinx

Lets re-write the equation,

=limx0coshxcosxx2sinxx=limx0coshxcosxx2, as sinxx=1=limx0coshxcosxx2(00)=limx0coshxcosxx2sinxx=limx0coshxcosxx2, as sinxx=1=limx0coshxcosxx2(00)

Applying L’Hospital rule,

=sinhx+sinx2x(00)=coshx+cosx2(00)=22=1=sinhx+sinx2x(00)=coshx+cosx2(00)=22=1

  1. limx0(e3x1)tan2xx3limx0(e3x1)tan2xx3

The expression can be written as,

=limx0(e3x1)(tanxx)2×x2x3=limx0(e3x1)(tanxx)2×x2x3

Using property of multiplication of two limits,

=limx0(e3x1)x2x3×limx0(tanxx)2=limx0(e3x1)x2x3, as limx0tanxx=0=limx0(e3x1)x(00)=limx0(e3x1)x2x3×limx0(tanxx)2=limx0(e3x1)x2x3, as limx0tanxx=0=limx0(e3x1)x(00)

Applying L’Hospital rule,

=limx03e3x1=3=limx03e3x1=3

9.1.2 Question 2

Evaluate the limits:

  1. limx0logsinxcotxlimx0logsinxcotx

Form of , so,

=limx0cosxsinxcsc2x=limx0sinxcosx=0=limx0cosxsinxcsc2x=limx0sinxcosx=0

  1. limx0logtanxlogxlimx0logtanxlogx

This is a limit of form , so

=limx01tanx×sec2x1x=limx0xsinxcosx(00)=limx01cos2xsin2x=110=1=limx01tanx×sec2x1x=limx0xsinxcosx(00)=limx01cos2xsin2x=110=1

  1. limx0logtanxtan2xlimx0logtanxtan2x

Properties of logarithms

  • If y=logbxy=logbx, then x=byx=by
  • logba=logalogblogba=logalogb

The given expression can then be written as,

limx0logtanxtan2x=limx0logtan2xlogtanx()=limx02sec22xtan2xsec2xtanx=limx02sinxcosxsin2xcos2x(00)=limx02(cos2xsin2x)2(cos22xsin22x)=22=1limx0logtanxtan2x=limx0logtan2xlogtanx()=limx02sec22xtan2xsec2xtanx=limx02sinxcosxsin2xcos2x(00)=limx02(cos2xsin2x)2(cos22xsin22x)=22=1

  1. limx0xlogxlimx0xlogx

The limit is of form 0×0×.

=limx0logx1x()=limx01x1x2=limx0x=0=limx0logx1x()=limx01x1x2=limx0x=0

  1. limx0xlogtanxlimx0xlogtanx

This is of form 0×0×.

=limx0logtanx1x()=limx0sec2xtanx1x2=limx0x2sinxcosx(00)=limx02xcos2xsin2x=01=0=limx0logtanx1x()=limx0sec2xtanx1x2=limx0x2sinxcosx(00)=limx02xcos2xsin2x=01=0

  1. limxa(ax)tan(πx2a)limxa(ax)tan(πx2a)

This is of form 0×0×.

=limxaaxcotπx2a(00)=limxa1csc2πx2a×π2a=limxasin2πx2a×2aπ=2aπ=limxaaxcotπx2a(00)=limxa1csc2πx2a×π2a=limxasin2πx2a×2aπ=2aπ

  1. limxxnexlimxxnex, nn being a positive integer

This is of form ,

limxxnex=limxnxn1ex=limxn(n1)xn2ex==limxn!ex=0limxxnex=limxnxn1ex=limxn(n1)xn2ex==limxn!ex=0

  1. limx0xlogsin2xlimx0xlogsin2x

The expression can be written as, limx02xlogsinxlimx02xlogsinx

This is of form 0×0×.

=limx02logsinx1x()=limx02cotx1x2=limx02x2tanx(00)=limx04xsec2x=01=0=limx02logsinx1x()=limx02cotx1x2=limx02x2tanx(00)=limx04xsec2x=01=0

9.1.3 Question 3

Evaluate the limits:

  1. limx0(1x21sin2x)limx0(1x21sin2x) [TU 2063, 64]

This is of form .

=limx0sin2xx2x2sin2x=limx0sin2xx2x4×(sinxx)2=limx0sin2xx2x4,limx0(sinxx)=1=limx0sin2xx2x4(00)=limx02sinxcosx2x4x3(00)=limx02(cos2xsin2x)212x2(00)=limx02cos2x212x2(00)=limx04sin2x24x(00)=limx08cos2x24=13=limx0sin2xx2x2sin2x=limx0sin2xx2x4×(sinxx)2=limx0sin2xx2x4,limx0(sinxx)=1=limx0sin2xx2x4(00)=limx02sinxcosx2x4x3(00)=limx02(cos2xsin2x)212x2(00)=limx02cos2x212x2(00)=limx04sin2x24x(00)=limx08cos2x24=13

  1. limx0(1x1ex1)limx0(1x1ex1)

This is of form .

=limx0exx1x(ex1)=limx0exx1x2×ex1x=limx0exx1x2limx0ex1x=1=limx0exx1x2(00)=limx0ex12x(00)=limx0ex2=12=limx0exx1x(ex1)=limx0exx1x2×ex1x=limx0exx1x2limx0ex1x=1=limx0exx1x2(00)=limx0ex12x(00)=limx0ex2=12

  1. limx0(1x2cot2x)limx0(1x2cot2x)

This is of form .

=limx01x2cos2xsin2x=sin2xx2cos2xx2sin2x=limx01x2cos2xsin2x=sin2xx2cos2xx2sin2x

After we put the expansion of sinxsinx and cosxcosx, we get,

=(xx33!+x55!x77!+)2x2(1x22!+x44!x66!+)2x2(xx33!+x55!x77!+)2=limx023x4+x4+=23=(xx33!+x55!x77!+)2x2(1x22!+x44!x66!+)2x2(xx33!+x55!x77!+)2=limx023x4+x4+=23

  1. limx0(1x1x2log(1+x))limx0(1x1x2log(1+x))

This is of form .

=limx0xlog(1+x)x2(00)=limx0111+x2x(00)=limx0(1+x)22=12=limx0xlog(1+x)x2(00)=limx0111+x2x(00)=limx0(1+x)22=12

9.1.4 Question 4

Evaluate the limits:

  1. limx0xxlimx0xx

This is of form 0000.

y=xxlogy=logxxlimx0logy=limx0xlogx0×=limx0logx1x()y=xxlogy=logxxlimx0logy=limx0xlogx0×=limx0logx1x()

Applying L’Hospital rule,

limx0logy=limx01xx2=limx0xlimx0logy=0log(limx0y)=0limx0y=e0limx0xx=1limx0logy=limx01xx2=limx0xlimx0logy=0log(limx0y)=0limx0y=e0limx0xx=1

  1. limxπ/2(sinx)tanxlimxπ/2(sinx)tanx

limx0logy=log(limx0y)limx0logy=log(limx0y)

The limit is of form 11.

y=(sinx)tanxlogy=log(sinx)tanxlogy=tanxlogsinxlimxπ/2logy=limxπ/2logsinxcotx(00)=limxπ/2cosxsinxcsc2x=limxπ/2sinxcosxlimxπ/2logy=0log(limxπ/2y)=0limxπ/2y=e0limxπ/2(sinx)tanx=1y=(sinx)tanxlogy=log(sinx)tanxlogy=tanxlogsinxlimxπ/2logy=limxπ/2logsinxcotx(00)=limxπ/2cosxsinxcsc2x=limxπ/2sinxcosxlimxπ/2logy=0log(limxπ/2y)=0limxπ/2y=e0limxπ/2(sinx)tanx=1

  1. limx0(cotx)sin2xlimx0(cotx)sin2x

It is of form 00.

y=(cotx)sin2xlogy=sin2xlogcotxlimx0logy=limx0sin2xlogcotx0×=limx0logcot2xcsc2x()=limx02csc22xcot2x2csc2xcot2x=limx0csc2xcot2x×1cot2x=limx0tan2xcos2x=01limx0logy=0limx0y=e0limx0(cotx)sin2x=1y=(cotx)sin2xlogy=sin2xlogcotxlimx0logy=limx0sin2xlogcotx0×=limx0logcot2xcsc2x()=limx02csc22xcot2x2csc2xcot2x=limx0csc2xcot2x×1cot2x=limx0tan2xcos2x=01limx0logy=0limx0y=e0limx0(cotx)sin2x=1

  1. limx0(cosx)cot2xlimx0(cosx)cot2x [TU 2058]

It is of form 11.

y=(cosx)cot2xlogy=cot2xlogcosxlimx0logy=limx0cot2xlogcosx×0=limx0logcosxtan2x=limx0logcosxx2(tanxx)2=limx0logcosxx2(00)=limx0tanx2x(00)=limx0sec2x2limx0logy=12limx0(cosx)cot2x=e1/2y=(cosx)cot2xlogy=cot2xlogcosxlimx0logy=limx0cot2xlogcosx×0=limx0logcosxtan2x=limx0logcosxx2(tanxx)2=limx0logcosxx2(00)=limx0tanx2x(00)=limx0sec2x2limx0logy=12limx0(cosx)cot2x=e1/2

  1. limxπ(sinx)tanx

It is of form 0.

y=(sinx)tanxlogy=tanxlogsinxlimxπlogy=limxπtanxlogsinx0×=limxπlogsinxcotx()=limxπcotxcsc2x=limxπsinxcosxlimxπlogy=0limxπy=e0limxπ(sinx)tanx=1

  1. limx0(cot2x)sinx [TU 2054, 2060, 2066]

The limit is of form 0.

y=(cot2x)sinxlogy=sinxlog(cot2x)limx0logy=limx0sinxlog(cot2x)0×=limx0log(cot2x)cscx()=limx01cot2x×2cotx×(csc2x)cscxcotx=limx02sinxcos2xlimx0logy=0limx0y=e0limx0(cot2x)sinx=1

  1. limx0(1x2)tanx

The limit will be of form 0.

y=(1x2)tanxlogy=tanxlog(1x2)=tanx(log1logx2)=2logxtanxlimx0logy=limx02logxtanx×0=limx02logxcotx()=limx02xcsc2x=limx02sin2xx=limx02x(sinxx)2=limx02xlimx0logy=0limx0y=e0limx0(1x2)tanx=1

  1. limx0(tanxx)1/x [TU 2057, 2062, 2063]

Let,

y=(tanxx)1/xlogy=1xlog(tanxx)limx0logy=limx01xlog(tanxx)=limx0log(tanxx)x(00)=limx01tanxx×ddx(tanxx)1limx0tanxx=1=limx011×ddx(tanxx)=limx0xsec2xtanxx2(00)=limx02xsec2xtanx+sec2xsec2x2x=limx0sec2xtanxlimx0logy=0limx0y=e0limx0(tanxx)1/x=1

  1. limx0(sinxx)1/x2

This is of form 1.

y=(sinxx)1/x2logy=1x2log(sinxx)limx0logy=limx0log(sinxx)x2(00)=limx01sinxx×ddx(sinxx)2x=limx01×xcosxsinxx22x=limx0xcosxsinx2x3(00)=limx0xsinx+cosxcosx6x2=limx0sinx6x(00)=limx0cosx6limx0logy=16limx0y=e1/6limx0(sinxx)1/x2=e1/6

  1. limx0(cotx)1/logx

This limit is of form 0.

y=(cotx)1/logxlogy=1logxlog(cotx)limx0logy=limx0log(cotx)logx()=limx01cotx×(csc2x)1x=limx0xsinxcosx(00)=limx01cos2xsin2x=1limx0logy=1limx0y=e1limx0(cotx)1/logx=e1

  1. limx0(tanxx)1/x2

The limit of this expression is 1.

y=(tanxx)1/x2logy=1x2log(tanxx)limx0logy=limx0log(tanxx)x2(00)=limx01tanxx×ddx(tanxx)2xlimx0tanxx=1=limx0xsec2xtanx2x×x2(00)=limx02xsec2xtanx+sec2xsec2x6x2=limx0sec2xtanx3xlimx0sec2x=1=limx01×tanx3x(00)=limx0sec2x3limx0logy=13limx0y=e1/3limx0(tanxx)1/x2=e1/3