Chapter 9 Indeterminate Forms-I
- 0000
- ∞−∞∞−∞
- 0000
- 0×∞0×∞
- ∞∞∞∞
- 1∞1∞
- ∞0∞0
are indeterminate forms.
9.1 Exercise 5
9.1.1 Question 1
Evaluate the limits:
- limx→2x3−2x2+2x−4x2−5x+6limx→2x3−2x2+2x−4x2−5x+6
This is of form 0000, so using L’Hospital rule,
=limx→23x2−4x+22x−5=12−8+2−1=−6=limx→23x2−4x+22x−5=12−8+2−1=−6
- limx→0tanx−xx−sinxlimx→0tanx−xx−sinx
This is also of form 0000. So applying L’Hospital rule,
=limx→0sec2x−11−cosx⟹(00)=limx→02sec2xtanxsinx=limx→02sec2xsinxsinxcosx=limx→02sec3x=2=limx→0sec2x−11−cosx⟹(00)=limx→02sec2xtanxsinx=limx→02sec2xsinxsinxcosx=limx→02sec3x=2
- limx→axn−anx−alimx→axn−anx−a
This is also of form 0000. So applying L’Hospital rule,
=limx→anxn−1−01=nan−1=limx→anxn−1−01=nan−1
- limx→0x−sin−1xsin3xlimx→0x−sin−1xsin3x
The expression can be written as, =limx→0x−sin−1xx3(sinxx)3=limx→0x−sin−1xx3(sinxx)3
Using property of multiplication of two limits,
=limx→0x−sin−1xx3×1, as limx→0sinxx=1=limx→0x−sin−1xx3=limx→0x−sin−1xx3×1, as limx→0sinxx=1=limx→0x−sin−1xx3
From the chapter on Taylor and Maclaurin series, we know the expansion of,
sin−1x=x+x33!+9x55!+…sin−1x=x+x33!+9x55!+…
So,
=limx→0x−sin−1xx3=limx→0x−(x+x33!+9x55!+…)x3=limx→0−x33!−9x55!−…x3⟹(00)=limx→0x−sin−1xx3=limx→0x−(x+x33!+9x55!+…)x3=limx→0−x33!−9x55!−…x3⟹(00)
Applying L’Hospital rule,
=limx→0−3x26−45x41203x2=limx→0−36−45x21203=−363=−16=limx→0−3x26−45x41203x2=limx→0−36−45x21203=−363=−16
Alternative method
=limx→0x−sin−1xx3⟹(00)=limx→0x−sin−1xx3⟹(00)
Applying L’Hospital rule,
=limx→01−(1−x2)−1/23x2⟹(00)=limx→012(1−x2)−3/2×(−2x)6x⟹(00)=limx→0−(1−x2)−3/26=−16=limx→01−(1−x2)−1/23x2⟹(00)=limx→012(1−x2)−3/2×(−2x)6x⟹(00)=limx→0−(1−x2)−3/26=−16
- limx→02sinx−sin2xtan3xlimx→02sinx−sin2xtan3x
This can be written as,
=limx→02sinx−sin2xx3×(tanxx)3=limx→02sinx−sin2xx3×1=limx→02sinx−sin2xx3⟹(00)=limx→02sinx−sin2xx3×(tanxx)3=limx→02sinx−sin2xx3×1=limx→02sinx−sin2xx3⟹(00)
Applying L’Hospital rule,
=limx→02cosx−2cos2x3x2⟹(00)=limx→0−2sinx+4sin2x6x⟹(00)=limx→0−2cosx+8cos2x6=66=1=limx→02cosx−2cos2x3x2⟹(00)=limx→0−2sinx+4sin2x6x⟹(00)=limx→0−2cosx+8cos2x6=66=1
- limx→11+logx−x1−2x+x2limx→11+logx−x1−2x+x2
This is also of form 0000. So applying L’Hospital rule,
=limx→11x−1−2+2x⟹(00)=limx→1−x−22=−12=limx→11x−1−2+2x⟹(00)=limx→1−x−22=−12
- limx→0log(1−x2)logcosxlimx→0log(1−x2)logcosx
This is also of form 0000. So applying L’Hospital rule,
=limx→011−x2×(−2x)−tanx⟹(00)=limx→02(1−x2)+4x2(1−x2)2sec2x=2=limx→011−x2×(−2x)−tanx⟹(00)=limx→02(1−x2)+4x2(1−x2)2sec2x=2
- limx→0xex−log(1+x)x2limx→0xex−log(1+x)x2
This is also of form 0000. So applying L’Hospital rule,
=limx→0xex+ex−11+x2x=limx→0xex+ex−11+x2x
Again of form 0000, so
=limx→0xex+ex+ex+1x22=0+1+1+12=32=limx→0xex+ex+ex+1x22=0+1+1+12=32
- limx→0tanx−xx2tanxlimx→0tanx−xx2tanx
The expression can be written as,
=limx→0tanx−xx3tanxx=limx→0tanx−xx3, as limx→0tanxx=0=limx→0tanx−xx3⟹(00)=sec2x−13x2⟹(00)=2sec2xtanx6x⟹(00)=sec2xtanx3x⟹(00)=sec4x+2sec2xtan2x3=1+03=13=limx→0tanx−xx3tanxx=limx→0tanx−xx3, as limx→0tanxx=0=limx→0tanx−xx3⟹(00)=sec2x−13x2⟹(00)=2sec2xtanx6x⟹(00)=sec2xtanx3x⟹(00)=sec4x+2sec2xtan2x3=1+03=13
- limx→0coshx−cosxxsinxlimx→0coshx−cosxxsinx
Lets re-write the equation,
=limx→0coshx−cosxx2sinxx=limx→0coshx−cosxx2, as sinxx=1=limx→0coshx−cosxx2⟹(00)=limx→0coshx−cosxx2sinxx=limx→0coshx−cosxx2, as sinxx=1=limx→0coshx−cosxx2⟹(00)
Applying L’Hospital rule,
=sinhx+sinx2x⟹(00)=coshx+cosx2⟹(00)=22=1=sinhx+sinx2x⟹(00)=coshx+cosx2⟹(00)=22=1
- limx→0(e3x−1)tan2xx3limx→0(e3x−1)tan2xx3
The expression can be written as,
=limx→0(e3x−1)(tanxx)2×x2x3=limx→0(e3x−1)(tanxx)2×x2x3
Using property of multiplication of two limits,
=limx→0(e3x−1)x2x3×limx→0(tanxx)2=limx→0(e3x−1)x2x3, as limx→0tanxx=0=limx→0(e3x−1)x⟹(00)=limx→0(e3x−1)x2x3×limx→0(tanxx)2=limx→0(e3x−1)x2x3, as limx→0tanxx=0=limx→0(e3x−1)x⟹(00)
Applying L’Hospital rule,
=limx→03e3x1=3=limx→03e3x1=3
9.1.2 Question 2
Evaluate the limits:
- limx→0logsinxcotxlimx→0logsinxcotx
Form of ∞∞∞∞, so,
=limx→0cosxsinx−csc2x=limx→0−sinxcosx=0=limx→0cosxsinx−csc2x=limx→0−sinxcosx=0
- limx→0logtanxlogxlimx→0logtanxlogx
This is a limit of form ∞∞∞∞, so
=limx→01tanx×sec2x1x=limx→0xsinxcosx⟹(00)=limx→01cos2x−sin2x=11−0=1=limx→01tanx×sec2x1x=limx→0xsinxcosx⟹(00)=limx→01cos2x−sin2x=11−0=1
- limx→0logtanxtan2xlimx→0logtanxtan2x
Properties of logarithms
- If y=logbxy=logbx, then x=byx=by
- logba=logalogblogba=logalogb
The given expression can then be written as,
limx→0logtanxtan2x=limx→0logtan2xlogtanx⟹(∞∞)=limx→02sec22xtan2xsec2xtanx=limx→02sinxcosxsin2xcos2x⟹(00)=limx→02(cos2x−sin2x)2(cos22x−sin22x)=22=1limx→0logtanxtan2x=limx→0logtan2xlogtanx⟹(∞∞)=limx→02sec22xtan2xsec2xtanx=limx→02sinxcosxsin2xcos2x⟹(00)=limx→02(cos2x−sin2x)2(cos22x−sin22x)=22=1
- limx→0xlogxlimx→0xlogx
The limit is of form 0×∞0×∞.
=limx→0logx1x⟹(∞∞)=limx→01x−1x2=limx→0−x=0=limx→0logx1x⟹(∞∞)=limx→01x−1x2=limx→0−x=0
- limx→0xlogtanxlimx→0xlogtanx
This is of form 0×∞0×∞.
=limx→0logtanx1x⟹(∞∞)=limx→0sec2xtanx−1x2=limx→0−x2sinxcosx⟹(00)=limx→0−2xcos2x−sin2x=01=0=limx→0logtanx1x⟹(∞∞)=limx→0sec2xtanx−1x2=limx→0−x2sinxcosx⟹(00)=limx→0−2xcos2x−sin2x=01=0
- limx→a(a−x)tan(πx2a)limx→a(a−x)tan(πx2a)
This is of form 0×∞0×∞.
=limx→aa−xcotπx2a⟹(00)=limx→a−1−csc2πx2a×π2a=limx→asin2πx2a×2aπ=2aπ=limx→aa−xcotπx2a⟹(00)=limx→a−1−csc2πx2a×π2a=limx→asin2πx2a×2aπ=2aπ
- limx→∞xnexlimx→∞xnex, nn being a positive integer
This is of form ∞∞∞∞,
limx→∞xnex=limx→∞nxn−1ex=limx→∞n(n−1)xn−2ex=…=limx→∞n!ex=0limx→∞xnex=limx→∞nxn−1ex=limx→∞n(n−1)xn−2ex=…=limx→∞n!ex=0
- limx→0xlogsin2xlimx→0xlogsin2x
The expression can be written as, limx→02xlogsinxlimx→02xlogsinx
This is of form 0×∞0×∞.
=limx→02logsinx1x⟹(∞∞)=limx→02cotx−1x−2=limx→0−2x2tanx⟹(00)=limx→0−4xsec2x=01=0=limx→02logsinx1x⟹(∞∞)=limx→02cotx−1x−2=limx→0−2x2tanx⟹(00)=limx→0−4xsec2x=01=0
9.1.3 Question 3
Evaluate the limits:
- limx→0(1x2−1sin2x)limx→0(1x2−1sin2x) [TU 2063, 64]
This is of form ∞−∞∞−∞.
=limx→0sin2x−x2x2sin2x=limx→0sin2x−x2x4×(sinxx)2=limx→0sin2x−x2x4,limx→0(sinxx)=1=limx→0sin2x−x2x4⟹(00)=limx→02sinxcosx−2x4x3⟹(00)=limx→02(cos2x−sin2x)−212x2⟹(00)=limx→02cos2x−212x2⟹(00)=limx→0−4sin2x24x⟹(00)=limx→0−8cos2x24=−13=limx→0sin2x−x2x2sin2x=limx→0sin2x−x2x4×(sinxx)2=limx→0sin2x−x2x4,limx→0(sinxx)=1=limx→0sin2x−x2x4⟹(00)=limx→02sinxcosx−2x4x3⟹(00)=limx→02(cos2x−sin2x)−212x2⟹(00)=limx→02cos2x−212x2⟹(00)=limx→0−4sin2x24x⟹(00)=limx→0−8cos2x24=−13
- limx→0(1x−1ex−1)limx→0(1x−1ex−1)
This is of form ∞−∞∞−∞.
=limx→0ex−x−1x(ex−1)=limx→0ex−x−1x2×ex−1x=limx→0ex−x−1x2⟹limx→0ex−1x=1=limx→0ex−x−1x2⟹(00)=limx→0ex−12x⟹(00)=limx→0ex2=12=limx→0ex−x−1x(ex−1)=limx→0ex−x−1x2×ex−1x=limx→0ex−x−1x2⟹limx→0ex−1x=1=limx→0ex−x−1x2⟹(00)=limx→0ex−12x⟹(00)=limx→0ex2=12
- limx→0(1x2−cot2x)limx→0(1x2−cot2x)
This is of form ∞−∞∞−∞.
=limx→01x2−cos2xsin2x=sin2x−x2cos2xx2sin2x=limx→01x2−cos2xsin2x=sin2x−x2cos2xx2sin2x
After we put the expansion of sinxsinx and cosxcosx, we get,
=(x−x33!+x55!−x77!+…)2−x2(1−x22!+x44!−x66!+…)2x2(x−x33!+x55!−x77!+…)2=limx→023x4+…x4+…=23=(x−x33!+x55!−x77!+…)2−x2(1−x22!+x44!−x66!+…)2x2(x−x33!+x55!−x77!+…)2=limx→023x4+…x4+…=23
- limx→0(1x−1x2log(1+x))limx→0(1x−1x2log(1+x))
This is of form ∞−∞∞−∞.
=limx→0x−log(1+x)x2⟹(00)=limx→01−11+x2x⟹(00)=limx→0(1+x)−22=12=limx→0x−log(1+x)x2⟹(00)=limx→01−11+x2x⟹(00)=limx→0(1+x)−22=12
9.1.4 Question 4
Evaluate the limits:
- limx→0xxlimx→0xx
This is of form 0000.
y=xxlogy=logxxlimx→0logy=limx→0xlogx⟹0×∞=limx→0logx1x⟹(∞∞)y=xxlogy=logxxlimx→0logy=limx→0xlogx⟹0×∞=limx→0logx1x⟹(∞∞)
Applying L’Hospital rule,
limx→0logy=limx→01x−x−2=limx→0−xlimx→0logy=0log(limx→0y)=0limx→0y=e0limx→0xx=1limx→0logy=limx→01x−x−2=limx→0−xlimx→0logy=0log(limx→0y)=0limx→0y=e0limx→0xx=1
- limx→π/2(sinx)tanxlimx→π/2(sinx)tanx
limx→0logy=log(limx→0y)limx→0logy=log(limx→0y)
The limit is of form 1∞1∞.
y=(sinx)tanxlogy=log(sinx)tanxlogy=tanxlogsinxlimx→π/2logy=limx→π/2logsinxcotx⟹(00)=limx→π/2cosxsinx−csc2x=limx→π/2−sinxcosxlimx→π/2logy=0log(limx→π/2y)=0limx→π/2y=e0limx→π/2(sinx)tanx=1y=(sinx)tanxlogy=log(sinx)tanxlogy=tanxlogsinxlimx→π/2logy=limx→π/2logsinxcotx⟹(00)=limx→π/2cosxsinx−csc2x=limx→π/2−sinxcosxlimx→π/2logy=0log(limx→π/2y)=0limx→π/2y=e0limx→π/2(sinx)tanx=1
- limx→0(cotx)sin2xlimx→0(cotx)sin2x
It is of form ∞0∞0.
y=(cotx)sin2xlogy=sin2xlogcotxlimx→0logy=limx→0sin2xlogcotx⟹0×∞=limx→0logcot2xcsc2x⟹(∞∞)=limx→0−2csc22xcot2x−2csc2xcot2x=limx→0csc2xcot2x×1cot2x=limx→0tan2xcos2x=01limx→0logy=0limx→0y=e0limx→0(cotx)sin2x=1y=(cotx)sin2xlogy=sin2xlogcotxlimx→0logy=limx→0sin2xlogcotx⟹0×∞=limx→0logcot2xcsc2x⟹(∞∞)=limx→0−2csc22xcot2x−2csc2xcot2x=limx→0csc2xcot2x×1cot2x=limx→0tan2xcos2x=01limx→0logy=0limx→0y=e0limx→0(cotx)sin2x=1
- limx→0(cosx)cot2xlimx→0(cosx)cot2x [TU 2058]
It is of form 1∞1∞.
y=(cosx)cot2xlogy=cot2xlogcosxlimx→0logy=limx→0cot2xlogcosx⟹∞×0=limx→0logcosxtan2x=limx→0logcosxx2(tanxx)2=limx→0logcosxx2⟹(00)=limx→0−tanx2x⟹(00)=limx→0−sec2x2limx→0logy=−12limx→0(cosx)cot2x=e−1/2y=(cosx)cot2xlogy=cot2xlogcosxlimx→0logy=limx→0cot2xlogcosx⟹∞×0=limx→0logcosxtan2x=limx→0logcosxx2(tanxx)2=limx→0logcosxx2⟹(00)=limx→0−tanx2x⟹(00)=limx→0−sec2x2limx→0logy=−12limx→0(cosx)cot2x=e−1/2
- limx→π(sinx)tanx
It is of form 0∞.
y=(sinx)tanxlogy=tanxlogsinxlimx→πlogy=limx→πtanxlogsinx⟹0×∞=limx→πlogsinxcotx⟹(∞∞)=limx→πcotx−csc2x=limx→π−sinxcosxlimx→πlogy=0limx→πy=e0limx→π(sinx)tanx=1
- limx→0(cot2x)sinx [TU 2054, 2060, 2066]
The limit is of form ∞0.
y=(cot2x)sinxlogy=sinxlog(cot2x)limx→0logy=limx→0sinxlog(cot2x)⟹0×∞=limx→0log(cot2x)cscx⟹(∞∞)=limx→01cot2x×2cotx×(−csc2x)−cscxcotx=limx→02sinxcos2xlimx→0logy=0limx→0y=e0limx→0(cot2x)sinx=1
- limx→0(1x2)tanx
The limit will be of form ∞0.
y=(1x2)tanxlogy=tanxlog(1x2)=tanx(log1−logx2)=−2logxtanxlimx→0logy=limx→0−2logxtanx⟹∞×0=limx→0−2logxcotx⟹(∞∞)=limx→0−2x−csc2x=limx→02sin2xx=limx→02x(sinxx)2=limx→02xlimx→0logy=0limx→0y=e0limx→0(1x2)tanx=1
- limx→0(tanxx)1/x [TU 2057, 2062, 2063]
Let,
y=(tanxx)1/xlogy=1xlog(tanxx)limx→0logy=limx→01xlog(tanxx)=limx→0log(tanxx)x⟹(00)=limx→01tanxx×ddx(tanxx)1⟹limx→0tanxx=1=limx→011×ddx(tanxx)=limx→0xsec2x−tanxx2⟹(00)=limx→02xsec2xtanx+sec2x−sec2x2x=limx→0sec2xtanxlimx→0logy=0limx→0y=e0limx→0(tanxx)1/x=1
- limx→0(sinxx)1/x2
This is of form 1∞.
y=(sinxx)1/x2logy=1x2log(sinxx)limx→0logy=limx→0log(sinxx)x2⟹(00)=limx→01sinxx×ddx(sinxx)2x=limx→01×xcosx−sinxx22x=limx→0xcosx−sinx2x3⟹(00)=limx→0−xsinx+cosx−cosx6x2=limx→0−sinx6x⟹(00)=limx→0−cosx6limx→0logy=−16limx→0y=e−1/6limx→0(sinxx)1/x2=e−1/6
- limx→0(cotx)1/logx
This limit is of form ∞0.
y=(cotx)1/logxlogy=1logxlog(cotx)limx→0logy=limx→0log(cotx)logx⟹(∞∞)=limx→01cotx×(−csc2x)1x=limx→0−xsinxcosx⟹(00)=limx→0−1cos2x−sin2x=−1limx→0logy=−1limx→0y=e−1limx→0(cotx)1/logx=e−1
- limx→0(tanxx)1/x2
The limit of this expression is 1∞.
y=(tanxx)1/x2logy=1x2log(tanxx)limx→0logy=limx→0log(tanxx)x2⟹(00)=limx→01tanxx×ddx(tanxx)2x⟹limx→0tanxx=1=limx→0xsec2x−tanx2x×x2⟹(00)=limx→02xsec2xtanx+sec2x−sec2x6x2=limx→0sec2xtanx3x⟹limx→0sec2x=1=limx→01×tanx3x⟹(00)=limx→0sec2x3limx→0logy=13limx→0y=e1/3limx→0(tanxx)1/x2=e1/3