Chapter 5 Higher Order Derivatives-I

Also called as successive derivatives.

Formulas for some typical functions

Table 1
Function nth derivative Remarks
y=xm yn=m!(mn)!xmn m is a positive integer
y=xm yn=n! if m=n be a positive integer
y=(ax+b)m yn=m!(mn)!an(ax+b)mn m is a positive integer, n<m
y=logx yn=(1)n1(n1)!xn
y=log(ax+b) yn=(1)n1(n1)!an(ax+b)n
y=1x yn=(1)nn!xn+1
y=1ax+b yn=(1)nn!an(ax+b)n+1
y=amx yn=mnamx(loga)n
y=eax yn=aneax
y=ax yn=ax(logea)n
y=sin(ax+b) yn=ansin(ax+b+nπ2)
y=cos(ax+b) yn=ancos(ax+b+nπ2)
Table 2
Function nth derivative Remarks
y=eaxsinbx yn=(a2+b2)n/2eaxsin(bx+ntan1ba)
y=eaxcosbx yn=(a2+b2)n/2eaxcos(bx+ntan1ba)
y=1x2a2 yn=(1)nn!2a[1(xa)n+11(x+a)n+1]
y=1x2+a2 yn=(1)nn!an+2sinn+1θsin(n+1)θ where θ=tan1(ax)
y=tan1x yn=(1)n1(n1)!sinnθsinnθ where θ=tan1(1x)

5.1 Exercise 3 (i)

5.1.1 Question 1

Find yn of the following:

  • y=(abx)m

y1=m(abx)m1by2=m(m1)(abx)m2b2y3=m(m1)(m2)(abx)m3b3yn=(1)nm(m1)(m2)(mn+1)bn(abx)mn

  • y=1ax

y1=1(ax)2×1=(ax)2y2=2(ax)3×1=2(ax)3y3=6(ax)4×1=6(ax)4yn=n!(ax)n+1

  • y=x2n

y1=2nx2n1y2=2n(2n1)x2n2y3=2n(2n1)(2n2)x2n3yn=2n(2n1)(2n2)(2n3)(2n4)(2nn+1)x2nn=2n(2n1)(2n2)(2n3)(2n4)(n+1)xn=2n(2n1)(2n2)(2n3)(2n4)(n+1)n(n1)(n2)(n3)3.2.1n(n1)(n2)(n3)3.2.1xn

Separating even and odd factors, we write

yn=[2n(2n2)(2n4)(2n8)6.4.2][(2n1)(2n3)5.3.1]n!xnyn=2n[n(n1)(n2)3.2.1][1.3.5(2n3)(2n1)]n!xnyn=2n[1.3.5(2n3)(2n1)]xn

  • y=x

y1=12x1/2y2=12×2x3/2y3=1×32×2×2x5/2y4=1×3×52×2×2×2x7/2y5=1×3×5×72×2×2×2×2x9/2yn=(1)n11.3.5.7.9(2n3)2nxn1/2

  • y=1x

y1=12x3/2y2=1×32×2x5/2y3=1×3×52×2×2x7/2y4=1×3×5×72×2×2×2x9/2yn=(1)n1.3.5.7(2n1)2nxn+1/2

  • y=1032x

Taking log both sides,

logy=(32x)log10=3log102xlog10

Differentiating w.r.t x,

1ydydx=02log10y1=2log10y=2log10×1032xy2=2log10y1=2log10×2log10×1032xy3=2log10y2=2log10×2log10×2log10×1032xy4=2log10y3=2log10×2log10×2log10×2log10×1032xyn=(1)n2n(log10)n1032x

  • y=xa+bx

Breaking into partial fractions,

y=1bab(a+bx)

Differentiating w.r.t x,

y1=0ab×(1)(a+bx)2×b=(1)2a(a+bx)2y2=(1)2a×(2)(a+bx)3×b=(1)32ab(a+bx)3y3=(1)32ab×(3)(a+bx)4×b=(1)46ab2(a+bx)4y4=(1)46ab2×(4)(a+bx)5×b=(1)524ab3(a+bx)5=yn=(1)n+1n!abn1(a+bx)n+1

  • y=xnx1

Let x1=t, then x=t+1.

The equation can be written as

y=(t+1)nt

Using binomial expansion,

y=nC0tn.1+nC1tn1.12+nC2tn2.13++nCn.1nty=tn+nC1tn1.1+nC2tn2.1++1ty=tn1+nC1tn2+nC2tn3++1ty=(x1)n1+nC1(x1)n2+nC2(x1)n3++1(x1)

The nth derivative is

yn=dnydxn[(x1)n1+nC1(x1)n2+nC2(x1)n3++1(x1)]yn=0+0+0++(1)nn!(x1)n+1=(1)nn!(x1)n+1

  • y=exsinxsin2x

sinxsin2x can be written as

=12[cos(x2x)cos3x]=12[cos(x)cos3x]=12[cosxcos3x]

Original equation can be written as thus

y=exsinxsin2x=ex×12[cosxcos3x]=12[excosxexcos3x]

The nth derivative is

=12[(12+12)n/2excos(x+ntan1(1/1))(12+32)n/2excos(3x+ntan1(3/1))]=12[2n/2excos(x+nπ4)10n/2excos(3x+ntan1(3/1))]=12[2n/2excos(x+nπ4)10n/2excos(3x+ntan13)]=12ex[2n/2cos(x+nπ4)10n/2cos(3x+ntan13)]

  • y=e3xsin4x

This equation is of the form y=eaxsinbx where a=3 and b=4. So from the table above, we have,

yn=(a2+b2)n/2eaxsin(bx+ntan1ba)yn=(32+42)n/2e3xsin(4x+ntan143)=(25)n/2e3xsin(4x+ntan143)yn=5ne3xsin(4x+ntan143)

  • y=exsin2x

The equation can be written as y=exsinxsinx.

We know from trigonometry,

sinαsinβ=12[cos(αβ)cos(α+β)]

So

sinxsinx=12[cos(xx)cos(x+x)]=12[1cos2x]

Thus the given equation can be written as

y=exsinxsinxy=ex(12[1cos2x])y=12[exexcos2x]

And its nth derivative is

yn=12[ex(12+22)n/2e1xcos(2x+ntan121)]yn=12[ex5n/2excos(2x+ntan12)]

5.1.2 Question 2

Find the nth derivatives of the following functions:

  • y=1x2+16

This equation can be written as y=1x2+42 which is of the form y=1x2+a2, so

yn=(1)nn!4n+2sinn+1θsin(n+1)θ

where θ=tan1(4x).

  • y=xx2+a2

Breaking the equation into partial fractions for simplicity of calculating nth derivative,

y=xx2(ia)2,where i=1=x(x+ia)(xia)=12[1x+ia+1xia]yn=12[Dn(1x+ia)+Dn(1xia)]

The nth derivative of 1ax+b is (1)nn!an(ax+b)n+1.

yn=12[(1)nn!(x+ia)n+1+(1)nn!(xia)n+1]=(1)nn!2[(x+ia)(n+1)+(xia)(n+1)]

Lets put x=rcosθ and a=rsinθ.

=(1)nn!2[(rcosθ+irsinθ)(n+1)+(rcosθirsinθ)(n+1)]

Applying De-Moivre’s theorem,

yn=(1)nn!2[r(n+1){cos((n+1)θ)+isin((n+1)θ)}+r(n+1){cos((n+1)θ)isin((n+1)θ)}]yn=(1)nn!2rn+1[2cos(n+1)θ]yn=(1)nn!rn+1[cos(n+1)θ]

cos(θ)=cosθ

Putting r=asinθ,

yn=(1)nn!an+1sinn+1θcos(n+1)θ

where θ=tan1ax.

  • y=1x2+x+1

The x values of denominator from the formula b±b24ac2a are 1+3i2 and 13i2.

So the equation can be resolved into partial fractions as follows,

y=1[x(1+3i2)][x(13i2)]=4[(2x+1)3i][(2x+1)+3i]y=423i[1(2x+1)3i1(2x+1)+3i]y=23i[1(2x+1)3i1(2x+1)+3i]

yn=23i[Dn(1(2x+1)3i)Dn(1(2x+1)+3i)]

yn=23i[(1)nn!2n(2x+13i)n+1(1)nn!2n(2x+1+3i)n+1]

The nth derivative of 12x+a+b is (1)n2nn!(2x+a+b)n+1.

Lets put 2x+1=rcosθ and 3=rsinθ, so that tanθ=32x+1.

yn=(1)n2n+1n!3i[(rcosθirsinθ)(n+1)(rcosθ+irsinθ)(n+1)]

Applying De-Moivre’s theorem,

yn=(1)n2n+1n!3i×r(n+1)[(cosθisinθ)(n+1)(cosθ+isinθ)(n+1)]=(1)n2n+1n!3i×r(n+1)[{cos((n+1)θ)isin((n+1)θ)}{cos((n+1)θ)+isin((n+1)θ)}]=(1)n2n+1n!3i×r(n+1)[cos(n+1)θ+isin(n+1)θcos(n+1)θ+isin(n+1)θ]

yn==(1)n2n+1n!r(n+1)3i[2isin(n+1)θ]yn==(1)n2n+2n!3r(n+1)[sin(n+1)θ]

Substituting r=3sinθ, we get

yn=(1)n2n+2n!3(3sinθ)n+1[sin(n+1)θ]yn=(1)n2n+2n!(3)n+2sinn+1θsin(n+1)θ

where θ=tan1(32x+1).

  • y=tan11+x1x

Lets assume x=tanθ.

Then equation becomes,

y=tan1tanπ/4+tanθ1tanπ/4tanθy=tan1tan(π/4+θ)y=π4+θ

So nth derivative is,

yn=Dn(π4)+Dn(tan1x)yn=0+Dn(tan1x)yn=(1)n1(n1)!sinnϕsinnϕ

where ϕ=tan11x.

The nth derivative of tan1x is (1)n1(n1)!sinnθsinnθ where θ=tan11x.

  • y=1(x2+a2)(x2+b2)

Breaking the equation into derivable known partial fractions,

y=1b2a2[1x2+a21x2+b2]yn=1b2a2[Dn(1x2+a2)Dn(1x2+b2)]=1b2a2[(1)nn!an+2sinn+1θsin(n+1)θ(1)nn!bn+2sinn+1ϕsin(n+1)ϕ]=(1)nn!b2a2[sinn+1θsin(n+1)θan+2sinn+1ϕsin(n+1)ϕbn+2]yn=(1)nn!a2b2[sinn+1ϕsin(n+1)ϕbn+2sinn+1θsin(n+1)θan+2]

where θ=tan1(ax) and ϕ=tan1(bx)

  • y=cot1xa

Differentiating w.r.t x,

y1=a2a2+x2×1ay1=(1)×ax2+a2

Differentiating the above equation n1 times gives nth derivative. We can use general formula for yn for expression 1x2+a2.

So in our case,

y1+n1=(1)Dn1(ax2+a2)y1+n1=(1)a[(1)n1(n1)!an1+2sinn1+1θsin(n1+1)θ]yn=(1)a[(1)n1(n1)!an+1sinnθsin(n)θ]=(1)n(n1)!ansinnθsin(n)θ

where θ=tan1(ax)

  • y=tan11+x21x

Lets assume x=tanθ.

So the equation becomes,

y=tan11+tan2θ1tanθ=tan1secθ1tanθ=tan11cosθsinθ=tan12sin2θ/22sinθ/2cosθ/2=tan1tanθ2y=θ2y=12θy=12tan1x

So nth derivative is,

yn=12(1)n1(n1)!sinnθsinnθ

where θ=tan11x.

5.1.3 Question 3

If y=1xx, show that y2(1)=0.

Taking log both sides,

logy=xlogx

Differentiating w.r.t x

1ydydx=x1xlogx=1logxy1=y(1+logx)

Again differentiating w.r.t x,

dy1dx=[y1(1+logx)+yx]y2=[y(1+logx)(1+logx)+yx]y2=y[(1+logx)21x]y2=1xx[(1+logx)21x]

So,

y2(1)=11[(1+0)21]=1(11)=0

Hence proved.

5.1.4 Question 4

If ax2+2hxy+by2=1, show that d2ydx2=h2ab(hx+by)3.

dydx=fxfy=2ax+2hy2hx+2byy1=ax+hyhx+byy2=[(hx+by)(a+hy1)(ax+hy)(h+by1)](hx+by)2=[(hx+by)(ah(ax+hy)hx+by)(ax+hy)(hb(ax+hy)hx+by)](hx+by)2=[(hx+by)(ahx+abyahxh2yhx+by)(ax+hy)(h2x+bhyabxbhyhx+by)](hx+by)2=[(hx+by)(abyh2y)(ax+hy)(h2xabx)](hx+by)2×(hx+by)=x(ax+hy)(h2ab)y(abh2)(hx+by)(hx+by)3=x(ax+hy)(h2ab)+y(h2ab)(hx+by)(hx+by)3=(h2ab)(ax2+hxy+hxy+by2)(hx+by)3=(h2ab)(ax2+2hxy+by2)(hx+by)3d2ydx2=h2ab(hx+by)3, as ax2+2hxy+by2=1

5.1.5 Question 5

If y=epxcosqx, prove that y2+2py1+(p2+q2)y=0.

Differentiating w.r.t x,

y1=qepxsinqxpepxcosqx=qepxsinqxpyy2=qddx(epxsinqx)py1y2=q[qepxcosqxpepxsinqx]py1=q[qy+py1+pyq]py1y2=qq[q2y+py1+p2y]py1y2+(p2+q2)y+2py1=0

5.1.6 Question 6

If y=x2n, where n is a positive integer, show that yn=2n[1.3.5(2n3)(2n1)]xn.

y=x2ny1=2nx2n1y2=2n(2n1)x2n2y3=2n(2n1)(2n2)x2n3yn=2n(2n1)(2n2)(2n3)(2n4)(2nn+1)x2nn=2n(2n1)(2n2)(2n3)(2n4)(n+1)xn=2n(2n1)(2n2)(2n3)(2n4)(n+1)n(n1)(n2)(n3)3.2.1n(n1)(n2)(n3)3.2.1xn

Separating even and odd factors, we write

yn=[2n(2n2)(2n4)(2n8)6.4.2][(2n1)(2n3)5.3.1]n!xnyn=2n[n(n1)(n2)3.2.1][1.3.5(2n3)(2n1)]n!xnyn=2n[1.3.5(2n3)(2n1)]xn

5.1.7 Question 7

If y=sinmx+cosmx, prove that

  • y2+m2y=0

y1=mcosmxmsinmxy2=m2sinmxm2cosmx=m2(sinmx+cosmx)=m2yy2+m2y=0

  • yn=mn{1+(1)nsin2mx}1/2

We have, y=sinmx+cosmx

dnydxn=Dn(sinmx)+Dn(cosmx)yn=mnsin(mx+0+nπ2)+mncos(mx+0+nπ2)=mn[sin(mx+nπ2)+cos(mx+nπ2)]

Squaring and taking square root,

yn=mn[{sin(mx+nπ2)+cos(mx+nπ2)}2]=mn[1+2sin(mx+nπ2)cos(mx+nπ2)]=mn[1+sin2(mx+nπ2)]=mn[1+sin(2mx+nπ)]=mn[1+sin2mxcosnπ+cos2mxsinnπ]=mn{1+(1)nsin2mx}1/2

because cosnπ=(1)n and sinnπ=0.

Thus,

yn=mn{1+(1)nsin2mx}1/2